Author:
Hu Lening,Yang Yu,Liu Xue Hui,Li SHuangli,Li Ke,Deng Hua
Abstract
Abstract
Background
In recent years, there have been several studies on the remediation of heavy metal pollution in soil by the application of biochar. However, little attention has been paid to understanding the effects and underlying mechanisms of biochar on soil carbon sequestration in manganese-contaminated farmlands. Therefore, in this study, bagasse biochar was applied to the soil in different proportions (0%, 0.5%, 2%, and 5%) and the test was conducted indoors for 100 days at a constant temperature. Soil physical and chemical properties, organic carbon mineralization, organic carbon components, and enzyme activities were analyzed in this study.
Results
In this study, when compared with the control, the application of 0.5%, 2%, and 5% bagasse biochar to the manganese-contaminated sugarcane field soil effectively reduced the cumulative CO2 emissions, i.e., decreased by 123.18 mg·kg−1, 208.28 mg·kg−1, and 287.79 mg·kg−1, respectively. Among the different treatment groups, the highest decrease in cumulative CO2 emissions was observed in the 5% bagasse biochar-treated soil when compared with the control. The application of bagasse biochar increased the soil microbial biomass carbon content by 12.72 mg·kg−1, 13.71 mg·kg−1, and 15.10 mg·kg−1, respectively when compared with the control. The soil nutrients and enzyme activities significantly increased with the increase in biochar application amount.
Conclusions
The application of bagasse biochar to manganese-contaminated sugarcane soil field effectively inhibited the mineralization of soil organic carbon, improved the carbon sequestration potential of manganese-contaminated sugarcane field soil, and provided a theoretical basis for the carbon sequestration mechanism in manganese-contaminated farmland soil.
Graphical Abstract
Funder
Guangxi Surface project
he Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, China
Publisher
Springer Science and Business Media LLC
Subject
Agronomy and Crop Science,Biochemistry,Food Science,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献