Optimization of alkali-treated banana pseudo-stem fiber/PBAT/PLA bio-composite for packaging application using response surface methodology

Author:

Pei Pei1,Zou Rui1,Zhang Chengming2,Yu Menghui3,Chang Sandra2,Tan Jia1,Li Jiaxin1,Li Xuehua1,Li Shizhong2

Affiliation:

1. Changsha Normal University

2. Tsinghua University

3. Tianjin University of Science and Technology

Abstract

The objective of this research was to prepare an optimized bio-composite for packaging based on alkali-treated banana pseudo-stem fiber (BPSF), PBAT, and PLA using response surface methodology (RSM). The effects of three factors, i.e., alkali-treated BPSF (0.8 to 2.4 g), PBAT (0.75 to 2.25 g), and PLA (1.6 to 3.2 g) on two dependent variables, i.e., bending strength and tensile strength of bio-composite, were investigated. Box-Behnken design (BBD) provided the combination for an optimum composite, which was 1.15 g of alkali-treated BPSF, 2.09 g of PBAT, and 2.66 g of PLA, respectively. The bending strength and tensile strength for alkali-treated BPSF/PBAT/PLA composite were 32.62 MPa and 30.91 MPa, which was 20.50% and 16.51% higher than native BPSF/PBAT/PLA composite. The bio-composite prepared using the optimized results was further characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetry, scanning electron microscopy (SEM), mechanical testing, contact angles, and water absorption tests. Analyses showed that alkali-treatment could improve the adhesion and compatibility of BPSF in the polymer matrix. These outcomes were associated with the use of treated-BPSF for better mechanical strength and lower hygroscopicity. This result demonstrated that alkali-treated agricultural residue and degradable polymer could be used to prepare composite materials for green packaging application.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3