Biocomposite optimization with NaOH-modified bagasse fiber, polybutylene succinate, and poly(lactic acid) using RSM approach

Author:

Pei Pei1,Zou Rui1,Wang Xinyao1,Liu Jinyan1,Liu Lulu1,Deng Xiaoyu1,Li Xuehua1,Yu Menghui2,Tan Jia1,Li Shizhong3

Affiliation:

1. Changsha Normal University

2. Tianjin University of Science and Technology

3. Tsinghua University

Abstract

Alkali-treated bagasse fiber was used as a process variable for optimization of the properties of polybutylene succinate/poly(lactic acid)-based biocomposites using Box-Behnken design (BBD) and response surface methodology (RSM). The optimum conditions for three factors, i.e., NaOH-treated bagasse fiber (0.55 to 1.65 g), polybutylene succinate (1.1 to 2.3 g), and poly(lactic acid) (2.2 to 3.4 g) on the bending strength of biocomposite were investigated. The optimum combination was 0.91 g of NaOH-treated bagasse fiber, 1.14 g of polybutylene succinate, and 3.10 g of poly(lactic acid). The bending strength for NaOH-treated bagasse fiber/polybutylene succinate/ poly(lactic acid) composite was 27.0 MPa, which was 26.0% higher than native bagasse fiber-based composite. The composites were also characterized by thermogravimetric analysis, mechanical testing, Fourier transform infrared, scanning electron microscopy, water absorption, and contact angle tests. Results demonstrated that the bending strength, impact strength, and tensile strength of alkali treated bagasse fiber-based biocomposite increased by 26.0%, 15.5%, and 23.3%, separately, compared with native bagasse-based composite after sequential homogenization, compounding, and hot pressing. The hydrophobicity for alkali-treated bagasse fiber/PBS/PLA was also improved. Thus, NaOH-treated biomass materials/biodegradable polymer was judged to be suitable for preparing green composite materials.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3