Reinforcing effects of seaweed nanoparticles in agar-based biopolymer composite: Physical, water vapor barrier, mechanical, and biodegradable properties

Author:

Dungani Rudi1,Sumardi Ihak1,Suhaya Yoyo1,Aditiawati Pingkan1,Dody Safar2,Rosamah Enih3,Islam Md. Nazrul4,Hartati Sri5,Karliati Tati1

Affiliation:

1. Institut Teknologi Bandung

2. Indonesian Institute of Sciences

3. Mulawarman University

4. Khulna University

5. Padjadjaran University

Abstract

In recent times, the indiscriminate disposal of post-consumer plastic packaging material has received global attention. There is a need to develop an alternative packaging material from bio-based polymers to reduce plastic waste pollution. This work studied the effects of loading seaweed nanoparticles into an agar matrix by analyzing the physical, mechanical, water vapor barrier, and biodegradation properties, as well as the surface morphological properties of biopolymer composite. The results showed that the addition of seaweed nanoparticles in the biopolymer matrix improved the properties of the agar-based biopolymer composite, except for the water vapor barrier properties of the biopolymer composite. The biopolymer composite film loaded with 6 w/w% seaweed nanoparticles appeared to achieve the highest mechanical strength. In addition, scanning electron microscopy analysis verified that the 6% w/w% seaweed nanoparticles biopolymer composite showed a homogenous surface morphology and had a strong adhesion on the interfaces of the filler and matrix. The samples had a desirable density of 0.0131 cm-1g-1 and a desirable biodegradability when 8 w/w% nanoparticles was used. This study verified that seaweed nanoparticles are compatible with agar matrix in terms of the enhancement of biopolymer composite properties.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3