Integrated efficiency of using nanocellulose-nano zero valent iron composite in water treatment

Author:

Wang Jian-Hui1,Mahmoud Mohamed S.2,Mahmoud Ahmed S.3

Affiliation:

1. Chongqing Technology and Business University; Chongqing South-to-Thais Environmental Protection Technology Research Institute Co., Ltd.

2. Housing and Building National Research Center (HBRC)

3. Egyptian Russian University (ERU)

Abstract

Water treatment using nano-materials can have a significant impact due to its surface properties. Coagulation techniques were studied by using 3 mL/L of 0.5% of different coagulants (polyacrylamide, poly aluminum chloride (PAC), ferric chloride, aluminum sulfate, and nanocellulose). Results indicated that the turbidity removal efficiency were 91.6%, 93.04%, 95.2%, 95.4%, and 99.4%, respectively. Treatment of water samples collected from the Ismailia Canal, the Damietta branch of the Nile Delta, and a wastewater treatment plant located in Cairo (Egypt) using nanocellulose fibers was studied. For the Ismailia Canal sample, the removal of turbidity, chemical oxygen demand (COD), biological oxygen demand (BOD), and phosphorous were 96%, 83.3%, 100%, and 100%, respectively. For the Damietta branch sample, the removal of turbidity, COD, BOD, and phosphorous were 87.5%, 81.3%, 88.9%, and 99.1%, respectively. For the wastewater treatment plant sample, the removal of turbidity, COD, BOD, and phosphorous were 86.4%, 91.96%, 92.86%, and 91.74%, respectively. Nanocellulose-nano zero-valent iron composite (NC-nZVI) was investigated for phosphorous removal at different operating conditions. Results showed phosphorous removal efficiencies of 91 and 100% for initial phosphate concentrations of 10 and 1 mg PO43– P/L, respectively. Different isothermal analyses were performed for monolayer and multilayer adsorption processes.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3