Preparation of nano zero-valent aluminum for one-step removal of methylene blue from aqueous solutions: cost analysis for scaling-up and artificial intelligence

Author:

Sadek Ahmed H.ORCID,Mostafa Mohamed K.ORCID

Abstract

AbstractMethylene blue (MB) is a heterocyclic aromatic dye that is difficult to biodegrade due to its complex chemical structure. In this study, chemically prepared nano zero-valent aluminum (nZVAl) was investigated for the first time for one-step removal of MB from aqueous solutions under different experimental factors (pH, dosage, time, MB concentration, stirring rate, temperature, detergents, and ionic strength). The prepared nZVAl material was characterized using XRD, TEM, SEM, EDS, and FTIR. Results indicated that at an initial MB concentration of 10 mg/L, pH 10, nZVAl dosage 1.0 g/L, stirring rate 200 rpm, and temperature 30 °C, the removal efficiency of approximately 99.0% was achieved within an equilibrium time of 90 min. An improvement in MB removal efficiency was observed in the presence of inorganic salts, while the presence of detergents resulted in a reduction in MB removal efficiency. The isotherm adsorption data were best fitted by the Freundlich isotherm model (R2: 0.9569), while the kinetic data were well described by the pseudo-second-order (PSO) model (R2: 0.9999). Based on the thermodynamic study, the MB adsorption process is physically diffusion-controlled. The adsorption of MB onto nZVAl was accurately described using an artificial neural network (ANN) with a structure of 11–10–1 and R2 of 0.97. The overall cost of scaling up the adsorption unit to be used for MB removal from aqueous solutions under the optimum conditions is about US$1.31/m3. Consequently, this study opens the door for other researchers to test nZVAl in treating real textile wastewater.

Funder

Badr University

Publisher

Springer Science and Business Media LLC

Subject

Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3