Changes in characteristics of wood fiber insulation board according to density

Author:

Lee Min1,Lee Sang-Min1,Kang Eun-Chang1

Affiliation:

1. Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea

Abstract

As the demand increases for low energy green buildings, such as passive housing, the development of new insulation systems based on natural materials is underway. In this study, 20-mm-thick wood fiber insulation board (WIB) samples of different densities were prepared using melamine-formaldehyde-urea (MFU) resin adhesives. The resin contents were fixed at 35% and the target densities were 0.10 g/cm3, 0.15 g/cm3, 0.20 g/cm3, and 0.25 g/cm3. The thermal conductivities of the WIBs gradually increased as the density increased. The formaldehyde (HCHO) emissions of all the WIBs indicated that they were of “Super E0” (SE0) grade, but the quantity of the HCHO emissions slightly increased as the density increased. The thickness swelling of all the WIBs was stable at less than 3%, and the bending strength linearly increased as the WIB density increased. A notable decrease in the water absorption rate was observed between the lower and higher density WIB samples. Based on the results of the cone calorimeter tests, the carbonization depth ratio and the weight loss rate remarkably decreased as the density increased. Therefore, the optimum WIB density was in the range of 0.15 g/cm3 to 0.20 g/cm3 to provide adequate insulation performance as well as human and structural safety.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3