A Review of Natural Bio-Based Insulation Materials

Author:

Cosentino Livia1ORCID,Fernandes Jorge1ORCID,Mateus Ricardo1ORCID

Affiliation:

1. Institute for Sustainability and Innovation in Structural Engineering (ISISE), Associate Laboratory Advanced Production and Intelligent Systems (ARISE), Department of Civil Engineering, University of Minho, 4800-058 Guimarães, Portugal

Abstract

Within the context of climate change and the environmental impact of the building industry, insulation materials contribute to improving the thermal performance of buildings, thus reducing energy demand and carbon emissions during the operation phase. Although most of them are responsible for significant carbon emissions during their production, bio-based insulation materials can provide good performance with low carbon emissions. This paper aims to investigate natural insulation materials’ properties and environmental impacts through a literature review. Due to the growing importance of Environmental Product Declarations (EPDs) on specification requirements, many manufacturers already disclose environmental data related to their products, allowing for a comparison between thermal insulation solutions. In academic research, embodied environmental impacts are not as explored as physical properties. In addition, from the analysis of results, it is possible to conclude that the characterization of the physical properties of this type of material is normally focused on thermal conductivity. Nevertheless, most studies overlook other important parameters of these materials, such as the thermal capacity, lifetime, and environmental impacts. This is something that is necessary to overcome in future developments to allow for a comprehensive comparison between the properties of different (conventional and bio-based) insulation materials.

Funder

Fundação para a Ciência e Tecnologia

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference84 articles.

1. IPCC (2022). Climate Change 2022—Mitigation of Climate Change—Working Group III, Cambridge University Press.

2. IPCC (2018). Global Warming of 1.5 °C. An IPCC Special Report on the Impacts of Global Warming of 1.5 °C above Pre-Industrial Levels and Related Global Greenhouse Gas Emission Pathways, in the Context of Strengthening the Global Response to the Threat of Climate Change, IPCC.

3. European Commission (2021). European Green Deal: Commission Proposes to Boost Renovation and Decarbonisation of Buildings, European Commission.

4. Comissão das Comunidades Europeias (2020). Um Novo Plano de Ação Para a Economia Circular, European Commission.

5. UNEP, and IRP (2020). Resource Efficiency and Climate Change: Material Efficiency Strategies for a Low-Carbon Future, International Resource Panel (IRP). A Report of the International Resource Panel.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3