Neural network for classification of Chinese zither panel wood via near-infrared spectroscopy

Author:

Huang Yinglai1,Meng Shiyu1,Hwang Sung-Wook2,Kobayashi Kayoko2,Sugiyama Junji3

Affiliation:

1. Northeast Forestry University, College of Information and Computer Engineering

2. Kyoto University, Research Institute for Sustainable Humanosphere

3. Kyoto University, Research Institute for Sustainable Humanosphere; Nanjing Forestry University, College of Materials and Engineering

Abstract

The wood grade used for Chinese zither panels is primarily determined through an artificial experience method, and the number of related practitioners is decreasing annually. In this study, a method using an improved BP neural network is proposed to assess the wood grade for Chinese zither panels. Abnormal spectral samples were first removed based on the Mahalanobis distance method. Normalization and Savitzky Golay second derivatization were applied to the remaining data set. According to the spectral peak, the spectral data were divided into three bands, which were applied to the model proposed in this paper, and the most critical spectral region for judging the wood grade of Chinese zither panels was obtained. Through principal component analysis, the appropriate feature variables were selected and applied to the experimental model for an analysis to reduce the calculated amount in the experiment. When the number of principal components was 6, the classification accuracy of unknown samples was 96.7%. Compared with the PLS model, the proposed model is more robust and accurate and has fewer losses. The experimental results indicated that the proposed method effectively identifies the wood grade used in Chinese zither panels.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3