Classification of Grain Storage Inventory Modes Based on Temperature Contour Map of Grain Bulk Using Back Propagation Neural Network

Author:

Cui HongweiORCID,Zhang Qiang,Zhang Jinsong,Wu Zidan,Wu Wenfu

Abstract

Inventory modes classification can reduce the workload of grain depot management and it is time-saving, not labor-intensive. This paper proposed a method of using a temperature contour map converted from digital temperature data to classify stored grain inventory modes in a large bulk grain warehouse, which mainly included detection of inventory changes and routine operations performed (aeration). The back propagation (BP) neural network was used in this method to identify and classify grain storage inventory modes based on the temperature contour map for helping grain depot management work. The method extracted and combined color coherence vector (CCV), texture feature vector (TFV) and smoothness feature vector (SFV) of temperature contour maps as the input vector of the BP neural network, and used inventory modes as the output vector. The experimental results indicated that the accuracy of the BP neural network with vector (CCV and TFV and SFV) as the input vector was about 93.9%, and its training time and prediction time were 320 and 0.12 s, respectively.

Funder

National Key Research and Development Technology Subtopics of China

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Reference55 articles.

1. Causes and research progress of condensation in grain heap;Zhang;Grain Storage,2018

2. Progress on the fever and moldy of paddy during storage;Xue;Sci. Technol. Food Ind.,2016

3. Research progress of rapid detection technology in grain mildew;Yang;Grain Oil,2018

4. Detection techniques for mold harm activities in stored-grain;Zhang;Food Mach.,2013

5. Feeding Deterrents against Two Grain Storage Insects from Euphorbia fischeriana

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3