Filtration efficiency improvement of air filter paper for fine particles by electrospinning technology

Author:

Su Weiyin1,Hui Lanfeng1,Ma Xiaoyan1,Yang Qian1,Sun Wanhong1

Affiliation:

1. Tianjin University of Science & Technology

Abstract

Due to great advantages, such as simple operation, high porosity, and good fiber continuity, the working principle and research progress of electrospinning technology was studied and polyvinyl alcohol (PVOH) nanofibers were prepared via this process. Air filter paper was used as the receiving substrate to prepare electrospun nano air filter paper (NAFP). The PVOH concentration, static voltage, and receiving distance, were tested to explore the influence of spinning parameters on the filtration performance. Further, the microfiber morphology of the electrospun NAFP was observed. The performance of filter paper, including air permeability, pore size, initial resistance, filtration efficiency, and dust retention, were tested. The results showed that the electrospun NAFP had better filtration performance compared to the air filter paper, and simultaneously they had lower initial resistance and higher precision filtration efficiency. The nanofiber influenced the surface of the air filter paper, as it sharply reduced the pore size. When the spinning condition was 10%, 21 kV, and 15 cm, the pore size decreased approximately 0.6 times of the original, which meant the electrospun NAFP could capture particles ≥ 0.2 μm in size. Finally, after three repeated uses, the good filtration performance was maintained.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3