Preparation, structure and application of styrene-acrylic emulsion/modified ammonium polyphosphate in flame retardant air filter paper

Author:

Jun Yan12ORCID,Jin Yang12,Lele Sun12,Guilong Xu12,Zhaohui Li3

Affiliation:

1. National Engineering Research Center of Papermaking and Pollution Control, South China University of Technology, Guangzhou, China

2. School of Light Industry Science and Engineering, State Key Lab of Pulp and Paper Engineering, South China University of Technology, Guangzhou, China

3. Guangdong Laboratory of South Ocean Science and Engineering (Zhuhai), Zhuhai, China

Abstract

The filter paper of automobile engine air filter is easy to temper and causes combustion. Flame retardant is usually added to the reinforced resin styrene-acrylic emulsion (SAE) to improve the flame-retardant performance of the air filter paper. Ammonium polyphosphate (APP) was used as material in this research, and multi-layer coated APP was prepared by microcapsule coating. A layer of nano-scale SiO2 was coated and then introduced organosiloxane structure of the allyl polyoxypropylene ether side chain and boron. The chemical groups and structural composition were determined by Fourier transform infrared spectroscopy. TGA characterized the modified particles' high-temperature stability. By scanning electron microscopy and TEM, the morphologies of modified particles were analyzed to reveal the evolution of modified APP in SAE. Finally, nanoparticles with core-shell structures were formed. Applying the blended resin to the air filter paper, the flame-retardant performance was greatly improved. Total heat release (THR), heat release rate (HRR), peak heat release rate (pkHRR), mass loss rate (MLR), and effective heat of combustion (EHC) were reduced, respectively, by 30.8%, 30.7%, 42.0%, 16.7%, and 14.4%. The time to ignition (TTI) was doubled, so the fire spread could be effectively suppressed. Meanwhile, nano latex particles were attached to the interwoven fibers points and formed a “sea-island structure,” which significantly improved the paper’s mechanical properties, with bursting strength, tensile strength, stiffness, fracture work, and elongation increased by 18.60%, 5.72%, 10.64%, 17.00%, and 81.80%, respectively. It solved the problem that the inorganic flame-retardant particles often lead to the deterioration of the mechanical properties of paper.

Funder

Program of Marine Economy Development Special Fund (Six Marine Industries) under Department of Natural Resources of Guangdong Province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Polymers and Plastics,Materials Science (miscellaneous),Chemical Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3