Halogen-Free Waterborne Polymeric Hybrid Coatings for Improved Fire Retardancy of Textiles

Author:

Yilmaz Onur12ORCID,Kucuk Mehmet3ORCID,Darie-Nita Raluca Nicoleta4ORCID,Cheaburu-Yilmaz Catalina Natalia25ORCID

Affiliation:

1. Leather Engineering Department, Faculty of Engineering, Ege University, Bornova 35100, Izmir, Türkiye

2. ACADEMICHEM Kimya ARGE San. Tic. Ltd. Şti, Ege University Technology Development Zone, Bornova 35100, Izmir, Türkiye

3. Textile Engineering Department, Faculty of Engineering, Ege University, Bornova 35100, Izmir, Türkiye

4. Physical Chemistry of Polymers Department, “Petru Poni” Institute of Macromolecular Chemistry, Romanian Academy, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania

5. Biochemistry Division, Department of Chemistry, Faculty of Science, Dokuz Eylul University, Buca 35390, Izmir, Türkiye

Abstract

Wildfires are becoming more intense and more frequent, ravaging the habitations and ecosystems in their path. One solution to reducing the risk of damage to buildings and other structures during a fire event is the use of fire-retardant coatings that can stop or slow down the spread of flames, especially for textile materials. The present study focuses on the preparation and application of halogen-free boron/bentonite-based polymeric fire-retardant (FR) hybrid coating formulations for fabrics such as cotton (CO) and polyester (PE) fibers. For the preparation of FR composites, two types of boron derivatives, disodium octaborate and zinc borate, were used in combination with sodium bentonite. A styrene-acrylic copolymer was specifically synthesized and used as a coating binder for FR components to apply on fabrics. The properties of the synthesized copolymer and FR composites were characterized with a particle size analysis, FTIR spectroscopy, a dynamic mechanical thermal analysis (DMTA), and rheological measurements. The obtained hybrid composites based on styrene-acrylic copolymers and two different inorganic fillers were applied on cotton (CO) and polyester (PE) fabrics with a screen-printing technique, and the flame retardancy performance of the finished textile samples was investigated by means of flame spread and limit oxygen index (LOI) tests. The findings showed that the FR-composite-coated fabrics had higher LOI values and much decreased flame spread rates in comparison with uncoated ones. Among the boron derivatives, the composites prepared with disodium octaborate (FR-A) had much more pronounced LOI values and decreased flame spread behavior in comparison with the composite with zinc borate (FR-B). When compared to a commercial product, the FR-A composite, in conjunction with the specially synthesized polymer, demonstrated commendable fire retardancy performance and emerged as a promising candidate for a halogen-free waterborne fire-retardant coating for fabrics.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3