Affiliation:
1. Walailak University
2. Università degli Studi di Milano
Abstract
Coconut husk, rubberwood sawdust, and palm leaf base are cellulosic agricultural wastes that have potential to be processed to fiber as absorbing material. This study investigated characteristics (morphological, physiological properties, chemical composition, absorption capacity, and water absorption isotherms) of coconut, rubberwood, and palm fiber. Also, the study aimed to develop an antimicrobial sachet packaging to resist against foodborne pathogens (Listeria monocytogenes, Staphylococcus aureus, Salmonella spp., and Escherichia coli) by adding lime oil (LO) emulsion or Litsea cubeba (LC) oil at 50 to 700 µL into the material (1 g) before, and then dried and placed in the 1-L seal box. Results showed that among the three, coconut performed the best in terms of releasing the essential oil (EO) emulsion against bacteria. Coconut could adsorb and release volatile LO or LC at the lowest concentrations (LO, 500 µL/L; LC, 300 µL/L) to inhibit bacteria compared with the other fibers (700 µL/L) at 35 °C. Results indicated that coconut has a low water absorption rate, which influenced the faster adsorption of EO emulsion in the beginning of the process; therefore, using low concentrations of EO in coconut for bacterial inhibition is possible. Coconut contains 34.5% lignin, 68.7% holocellulose, 37.6% cellulose, and 31.2% hemicellulose. Coconut is suitable as an alternative to the biocomposite material in developing a new antimicrobial packaging design.
Subject
Waste Management and Disposal,Bioengineering,Environmental Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献