Transfer strategy for near infrared analysis model of holocellulose and lignin based on improved slope/bias algorithm

Author:

Wang Honghong1,Xiong Zhixin1,Hu Yunchao1,Liu Zhijian1,Liang Long1

Affiliation:

1. Nanjing Forestry University

Abstract

Model transfer techniques in near infrared spectroscopy are important for avoiding duplicate modeling, sharing samples and data resources, and reducing the human and material consumption required for modeling. Use of the slope/bias correction algorithm (S/B) based on screening wavelengths with consistent and stable signals (SWCSS) for model transfer is a new strategy. To enable sharing of near infrared analysis models of pulp holocellulose and lignin content in two different types of spectroscopic instruments, a combined SWCSS-S/B algorithm was proposed. The stable and consistent wavelengths between the spectroscopic instruments screened by the SWCSS method reduced the differences between the instruments, thereby improving the universality and transmission accuracy of the S/B method. The SWCSS-S/B based model transfer method reduced the predicted standard deviation RMSEP of holocellulose and lignin contents of the samples measured on the target spectrometer of the from 5.4686 and 7.6823 to 1.2133 and 1.3494, respectively. This result showed a significant improvement in the transfer effect compared to the SWCSS and S/B correction results alone, and the prediction of holocellulose was better than that of the prediction effect of lignin. The method has fewer wavelength variables involved in model transfer, fast transfer speed, and high prediction accuracy, which provides a new solution for the wide application of NIR analytical models.

Publisher

BioResources

Subject

Waste Management and Disposal,Bioengineering,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3