Author:
Moldovan A.-S.,Ruhlmann M.,Görges R.,Bockisch A.,Rosenbaum-Krumme S.,Jentzen W.
Abstract
SummaryAim: A theoretical dosimetry-based model was applied to estimate the lowest effective radioiodine activity for thyroid remnant ablation of low-risk differentiated thyroid cancer patients. Patients, methods: The model is based on the distribution of the absorbed (radiation) dose per administered radioiodine activity and the absorbed dose threshold of 300 Gy for thyroid remnants, the level believed to destroy most thyroid remnants. For this purpose, 124I PET/CT images of 49 thyroid-ectomised patients were retrospectively analysed to measure the distribution of the (average) absorbed doses to thyroid remnant per administered 131I activity. The fraction of thyroid remnants that received at least 300 Gy was determined for standard activities between 0.37 and 5.55 GBq. The lower activity was considered to be equally effective to that obtained with higher activity if the (absolute) fraction difference was below 5%. Results: A total of 62 thyroid remnants were included. The medians and ranges (in parentheses) for the absorbed dose per unit 131I activity were 359 Gy/GBq (34 to 1825 Gy/ GBq). The fractions of thyroid remnants receiving more than 300 Gy at different therapy activities (within parentheses) were 60% (1.11 GBq), 76% (1.85 GBq), 79% (2.22 GBq), and 81–82% for activities between 2.59 and 3.70 GBq. The therapy activity of 1.11 GBq is considerably less effective than that of 1.85 or 2.22 GBq; therapy activities were equally effective in the range between 2.22 to 3.70 GBq. Conclusion: On the basis of the model and the patients' data included, the lowest effective therapy activity appears to be approximately 2.2 GBq to ablate thyroid remnants. The results of this study may help to guide the design of prospective clinical studies.
Subject
Radiology Nuclear Medicine and imaging,General Medicine
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献