Depth and substrate type influence community structure and diversity of wood and whale-bone habitats on the deep NE Pacific margin

Author:

Young EL1,Halanych KM2,Amon DJ3,Altamira I1,Voight JR4,Higgs ND5,Smith CR1

Affiliation:

1. Department of Oceanography, University of Hawai‘i at Mānoa, Honolulu, HI 96822, USA

2. Center for Marine Science, University of North Carolina Wilmington, Wilmington, NC 28409, USA

3. SpeSeas D’Abadie, Trinidad and Tobago

4. Negaunee Integrative Research Center, Field Museum of Natural History, Chicago, IL 60605, USA

5. Cape Eleuthera Institute, Rock Sound, Eleuthera EL-26029, Bahamas

Abstract

Whale bones and wood on the deep-sea floor provide resource pulses that support characteristic faunal assemblages in an otherwise food-poor environment. To isolate the role of bathymetric and geographical drivers of organic-fall diversity and community structure, the study of organic-rich substrates of similar sizes, qualities, and seafloor durations is necessary. We used a comparative experimental approach to examine the roles of depth, location, and substrate type in structuring organic-fall faunal assemblages. Four free-vehicle landers containing replicate wood, whale-bone, and inorganic hard (control) substrates were deployed for 15 mo at depths of ~1600 and ~2800 m, spaced at ~400 km along the Washington-Oregon (USA) margin. The landers collected a total of ~84890 macrofaunal individuals of 144 species. Wood, bone, and control substrates supported assemblages with different community structures on all landers. Community composition was significantly different between depths and between locations at similar depths, indicating variability on regional and bathymetric scales. Wood blocks at ~1600 m were heavily degraded by wood-boring xylophagaid bivalves. Xylophagaid colonisation was lower in deeper wood blocks, which we hypothesise results partly from lower propagule supply as wood falls decrease in abundance with distance from terrestrial sources of wood. Bone-eating Osedax colonised whale bones, but bone degradation was low compared to some NE Pacific whale falls of similar duration; nonetheless, bones exhibited reducing conditions and supported sulphophilic species. Our study demonstrates quantitatively that co-located wood falls and whale bones support highly distinct, species-rich assemblages and thus promote biodiversity on the deep-sea floor.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3