Inducible defenses in an estuarine bivalve do not alter predator handling times and are not affected by climate change

Author:

Stallings CD1,Freytes-Ortiz IM1,Plafcan MM1,Langdon C2

Affiliation:

1. College of Marine Science, University of South Florida, St. Petersburg, Florida 33701, USA

2. Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida 33149, USA

Abstract

Mussels use their shells for protection which they can thicken or grow in response to predator cues, commonly referred to as an inducible defense. Oceans are experiencing elevated pCO2 due to climate change. Elevated pCO2 can have negative effects on bivalve morphology and physiology, but we are still learning about the consequences of these effects on predator-prey interactions, a key motivation of this study. Using a 4 wk (short-term) laboratory experiment, we orthogonally manipulated 2 levels of pCO2 (ambient or elevated to predicted future conditions that mimicked diel variability) and 2 levels of predator presence (absent or present) of blue crabs Callinectes sapidus to determine their effects on the morphology and predator handling times on southern ribbed mussels Geukensia granosissima. Experimental results indicated that shell length and width increased in mussels in response to the predator cues, and these inducible defenses were not affected by elevated pCO2. Unexpectedly, mussels exposed to elevated pCO2 exhibited greater growth in shell depth independent of the predator treatment, resulting in shells with rounder shapes. These effects on mussel morphometrics did not affect average crab handling times, but mussels exposed to the presence of a predator under elevated pCO2 conditions had highly variable handling times. This work highlights the complexity of animal physiology, morphology, and interspecific interactions on predator-prey relationships in a changing ocean.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3