Ocean acidification and predation risk, in isolation and in combination, show strong effects on marine mussels

Author:

Hu N,Hollander J1,Brönmark C2,Persson A2

Affiliation:

1. World Maritime University, Ocean Sustainability, Governance & Management Unit, 211 18 Malmö, Sweden

2. Department of Biology - Aquatic Ecology, Lund University, 221 00 Lund, Sweden

Abstract

Carbon dioxide-induced ocean acidification is producing a range of new selection pressures on marine calcifying organisms that show phenotypic plasticity in their shell morphology in response to predators. Although there are numerous studies on the effects of ocean acidification and predation risk on marine bivalves in isolation, information concerning their combined effects is still lacking. To bridge this gap, we conducted a long-term mesocosm experiment using mussel populations with different histories of predator exposure: crab-experienced and crab-naïve. Mussels were exposed to either lower pH or crab cues and the combination of both of these treatments for 4 mo. We demonstrate that both crab-experienced and crab-naïve mussels have heavier, thicker, rounder and, thus, stronger shells in response to crab cues, whereas low pH significantly decreased shell mass, thickness and strength. Mussels with previous crab experience showed greater plasticity in response to crab cues than crab-naïve mussels. However, the differences in plasticity between naïve and crab-experienced mussels to crab cues disappeared in the acidification treatment. Exposure to low pH and crab cues resulted in antagonistic interactions for all traits, except for shell length, where the combined effect was additive. However, there was no difference between populations in the interaction type for any of the traits. Our study provides increased understanding of potential implications for mussel populations under climate change.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3