Fine-scale spatial and diel dynamics of zooplanktivorous fish on temperate rocky and artificial reefs

Author:

Holland MM123,Becker A4,Smith JA15,Everett JD16,Suthers IM12

Affiliation:

1. Evolution and Ecology Research Centre, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW 2052, Australia

2. Sydney Institute of Marine Science, Mosman, NSW 2088, Australia

3. Marine Conservation Research Group, School of Biological and Marine Sciences, University of Plymouth, PL4 8AA, UK

4. Port Stephens Fisheries Institute, New South Wales Department of Primary Industries, Taylors Beach, NSW 2316, Australia

5. Institute of Marine Sciences, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA 95062, USA

6. Centre for Applications in Natural Resource Mathematics, School of Mathematics and Physics, The University of Queensland, St Lucia, QLD 4067, Australia

Abstract

Plankton is an important component of the food web in coastal reef ecosystems. Ocean currents subsidise local production by supplying plankton to resident and reef-associated planktivorous fishes. Measuring the fine-scale distribution of these schooling fishes provides insight into their habitat use and how they balance risk and reward while foraging for plankton. Maintaining their proximity to benthic structure can provide refuge from predation but may also limit foraging opportunities. We used a portable multibeam echosounder to survey schooling fish at 5 natural and 3 artificial reefs, during day and night and under different current conditions. We isolated midwater acoustic targets and used generalised linear models to explain the distribution of schools as a function of current exposure, distance from structure and seafloor complexity. We also isolated individual schools and used generalised least squares to model how school characteristics differed between night and day, using spatial metrics of school area, perimeter length and height above the seafloor. Modelling revealed that the occurrence of schools was almost twice as likely upstream versus downstream of artificial reefs, although distance to reef structure was the main influence. School occurrence was also more likely on artificial versus natural reefs. Schools at artificial reefs exhibited greater volume and areal coverage at night, and during the day they rose higher in the water column while aggregating more closely around the reef. These findings suggest that artificial and natural reefs featuring enhanced vertical relief and direct exposure to the prevailing current are preferred habitats for planktivorous fish.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3