Fine-scale spatial distribution of a fish community in artificial reefs investigated using an underwater drone and environmental DNA analysis

Author:

Miyajima-Taga Y1,Sato M1,Oi K1,Furuichi N1,Inoue N1

Affiliation:

1. Fisheries Engineering, Environment and Fisheries Applied Techniques Research Department, Fisheries Technology Institute, Japan Fisheries Research and Education Agency, Kamisu, Ibaraki 3140408, Japan

Abstract

Although artificial reef (AR) effect evaluation is useful for planning the installation of high-rise ARs and their management, few studies have investigated them quantitatively. The fine-scale 2-dimensional fish distribution in ARs was estimated regarding current fields and vertical structures of 2 high-rise ARs (20 and 30 m high at 62 and 72 m depths, respectively) in Tateyama Bay, central Japan, using underwater drone recordings with vertical line transects and environmental DNA (eDNA) metabarcoding. The species detected by video surveys (21 taxa were identified to species, and 1 to genus) were fewer than by eDNA analysis (103 species and 6 genera), especially for pelagic, small-sized, and cryptic fish. Video surveys revealed that demersal fish increased with decreasing horizontal distance from the AR surface within 20 m, and the richness and total fish density were significantly higher upstream of the ARs. Conversely, the fish eDNA concentration showed different patterns, with significantly higher concentrations downstream of the ARs. The richness peaked at horizontal AR surfaces (e.g. reef top), but density of the dominant species peaked near the bottom by video survey. In comparison, eDNA analysis indicated lower richness and higher eDNA concentration of the dominant species at the reef top. Such discrepancies may be explained by the influence of eDNA transport or its specific behavior or buoyancy. Video surveys revealed the growth stage and sex information of 4 species from their morphology, which is not possible using eDNA analysis. This study shows that the advantages of each evaluation method can complement each other.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3