Effects of a power plant closure on home ranges of green turtles in an urban foraging area

Author:

Eguchi T1,Bredvik J2,Graham S3,LeRoux R1,Saunders B3,Seminoff JA1

Affiliation:

1. Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, CA 92037-1508, USA

2. United States Navy, Naval Facilities Engineering Command Southwest, San Diego, CA 93132-5190, USA

3. United States Navy, Naval information Warfare Center, San Diego, CA 92152-5001, USA

Abstract

A natural experiment was conducted to determine effects of a fossil-fueled power plant on home ranges of east Pacific green turtles Chelonia mydas in an urban foraging ground. The power plant, located in south San Diego Bay, California, USA, co-existed with a resident foraging aggregation of ~60 green turtles for ~50 yr. It was decommissioned during a long-term green turtle monitoring study, thus providing a rare opportunity to evaluate how the cessation of warm-water effluent affected turtle movements and habitat use in the area. During pre- and post-decommissioning of the power plant, 7 and 23 green turtles, respectively, were equipped with GPS-enabled satellite transmitters. Useful data were obtained from 17 turtles (4 for pre- and 13 for post-decommissioning). Core use areas (50% utilization distribution [UD]) increased from 0.71 to 1.37 km2 after the power plant decommissioning. Increase in post-power plant 50% UD was greater during nighttime (0.52 to 1.44 km2) than daytime (1.32 to 1.43 km2). Furthermore, UDs moved from the effluent channel to an area closer to seagrass pastures, a presumed foraging habitat of the turtles. The observed expansion of green turtle home ranges may increase turtle-human interactions, such as boat strikes, within the foraging ground; this underscores how seemingly innocuous human actions contribute to inadvertent consequences to wildlife. Possible management and conservation actions include increasing awareness of the public regarding turtle presence in the area through signage and education as well as legislating for a reduction in boat speeds in select areas of the bay.

Publisher

Inter-Research Science Center

Subject

Nature and Landscape Conservation,Ecology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3