Research on Green Habitat Design Based on Field Wireless Sensing Hazardous Substance Detection

Author:

Xiong Wei1ORCID,Hu Liangquan2ORCID

Affiliation:

1. School of Architecture, Southeast University, Jiangsu, Nanjing 210018, China

2. Architectural Design & Research Institute, Hefei Construction Engineering Group Co., Ltd, Hefei, Anhui 230088, China

Abstract

Field wireless sensor network is the current global engineering field research hotspot for structural health monitoring wireless sensor network that is one of the important branches to real-time monitoring of the safety status of the upper wood engineering structure to avoid the occurrence of many safety accidents caused by major structural and equipment damage and to guide the maintenance of major structures; the establishment of a wireless sensor network system is one of the current research priorities. This paper researches and designs a wireless sensor network system level scheme for structural health monitoring that is divided into two parts based on the hardware platform design and software development based on the system that focuses on the time synchronization protocol and synchronous acquisition method featuring synchronous acquisition start time scheme, time separation method, and flexible optimization model of time information. The method applies to high-frequency acquisition to guarantee the time of sampling points in structural environmental measurement. The accuracy of the information and the reliability of the field diagnosis, for the detection of harmful substances, as well as leading to the construction of green habitat environment have a qualitative leap, for the design of green habitat environment that has enough progress.

Publisher

Hindawi Limited

Subject

Electrical and Electronic Engineering,Instrumentation,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3