Swimming behaviors during diel vertical migration in veined squid Loligo forbesii

Author:

Cones SF12,Zhang D3,Shorter KA3,Katija K4,Mann DA5,Jensen FH16,Fontes J7,Afonso P17,Mooney TA1

Affiliation:

1. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

2. MIT-WHOI Joint Program in Oceanography/Applied Ocean Science & Engineering, Cambridge, MA 02139, USA

3. Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA

4. Research and Development, Monterey Bay Aquarium Research Institute, Moss Landing, CA 93940, USA

5. Loggerhead Instruments, Sarasota, FL 34238, USA

6. Biology Department, Syracuse University, Syracuse, NY 13244, USA

7. Institute of Marine Sciences - Okeanos, University of the Azores, Rua Professor Doutor Frederico Machado 4, 9901-862 Horta, Portugal

Abstract

Diel vertical migration (DVM) is a vital behavior for many pelagic marine fauna. Locomotory tactics that animals use during DVM define the metabolic costs of migrations and influence the risk of detection and capture by predators, yet, for squids, there is little understanding of the fine-scale movements and potential variability during these migrations. Vertical migratory behaviors of 5 veined squid Loligo forbesii were investigated with biologging tags (ITags) off the Azores Islands (central North Atlantic). Diel movements ranged from 400 to 5 m and were aligned with sunset and sunrise. During ascent periods, 2 squid exhibited cyclic climb-and-glide movements using primarily jet propulsion, while 3 squid ascended more continuously and at a lower vertical speed using mostly a finning gait. Descents for all 5 squid were consistently more rapid and direct. While all squid swam in both arms-first and mantle-first directions during DVM, mantle-first swimming was more common during upward movements, particularly at vertical speeds greater than 25 cm s-1. The in situ variability of animal posture, swim direction, and gait use revealed behavioral flexibility interpreted as energy conservation, prey capture, and predator avoidance.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3