Swimming mechanics and behavior of the shallow-water brief squidLolliguncula brevis

Author:

Bartol Ian K.1,Patterson Mark R.2,Mann Roger2

Affiliation:

1. Department of Organismic Biology, Ecology, and Evolution, 621 Charles E. Young Drive South, University of California, Los Angeles, CA 90095-1606, USA and

2. School of Marine Science, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA 23062-1346, USA

Abstract

SUMMARYAlthough squid are among the most versatile swimmers and rely on a unique locomotor system, little is known about the swimming mechanics and behavior of most squid, especially those that swim at low speeds in inshore waters. Shallow-water brief squid Lolliguncula brevis, ranging in size from 1.8 to 8.9 cm in dorsal mantle length (DML), were placed in flumes and videotaped, and the data were analyzed using motion-analysis equipment. Flow visualization and force measurement experiments were also performed in water tunnels. Mean critical swimming speeds (Ucrit) ranged from 15.3 to 22.8 cm s–1, and mean transition speeds (Ut; the speed above which squid swim exclusively in a tail-first orientation) varied from 9.0 to 15.3 cm s–1. At low speeds, negatively buoyant brief squid generated lift and/or improved stability by positioning the mantle and arms at high angles of attack, directing high-speed jets downwards (angles >50°) and using fin activity. To reduce drag at high speeds, the squid decreased angles of attack and swam tail-first. Fin motion, which could not be characterized exclusively as drag- or lift-based propulsion, was used over 50–95 % of the sustained speed range and provided as much as 83.8 % of the vertical and 55.1 % of the horizontal thrust. Small squid (<3.0 cm DML) used different swimming strategies from those of larger squid, possibly to maximize thrust benefits from vortex ring formation. Furthermore, brief squid employed various unsteady behaviors, such as manipulating funnel diameter during jetting, altering arm position and swimming in different orientations, to boost swimming performance. These results demonstrate that locomotion in slow-swimming squid is complex, involving intricate spatial and temporal interactions between the mantle, fins, arms and funnel.

Publisher

The Company of Biologists

Subject

Insect Science,Molecular Biology,Animal Science and Zoology,Aquatic Science,Physiology,Ecology, Evolution, Behavior and Systematics

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3