Spatiotemporal segregation of ocean sunfish species (Molidae) in the eastern North Pacific

Author:

Arostegui MC1,Braun CD23,Woodworth-Jefcoats PA4,Kobayashi DR4,Gaube P1

Affiliation:

1. Air-Sea Interaction and Remote Sensing Department - Applied Physics Laboratory, University of Washington, Seattle, WA 98105, USA

2. School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA

3. Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA

4. National Oceanic and Atmospheric Administration (NOAA) Pacific Islands Fisheries Science Center (PIFSC), Honolulu, HI 96818, USA

Abstract

Ocean sunfishes or molas (Molidae) are difficult to study as a result of their extensive movements and low densities in remote waters. In particular, little is known of the environmental niche separation and differences in the reproductive or movement ecology of molids in sympatry. We investigated spatiotemporal dynamics in the distribution of the common mola Mola mola, sharptail mola Masturus lanceolatus, and slender mola Ranzania laevis in the eastern North Pacific. We used observer data from a commercial fishery consisting of 85000+ longline sets spanning 24 yr, >50° in longitude, and >45° in latitude. Satellite altimetry analysis, species distribution modeling, and multivariate ordination revealed thermal niche separation, spatiotemporal segregation, and distinct community associations of the 3 molid species. Our quantitative findings suggest that the common mola is a more temperate species, while slender and sharptail mola are more (sub)tropical species, and that slender (and possibly also sharptail) mola undergo spawning migrations to the region around the Hawaiian Islands. In addition, we identified potential effects of fishing gear type on molid catch probability, an increasing trend in catch probability of a vulnerable species perhaps related to a shift in the distribution of fishing effort, and the possible presence in the fishery of a fourth molid species being misidentified as a congener, all of which are important conservation considerations for these enigmatic fishes.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3