Seasonal and interannual changes in a coastal Antarctic zooplankton community

Author:

Conroy JA1,Steinberg DK1,Thomas MI1,West LT12

Affiliation:

1. Virginia Institute of Marine Science, William & Mary, Gloucester Point, VA, 23062, USA

2. Center for Ecosystem Sentinels, Department of Biology, University of Washington, Seattle, WA, 98195, USA

Abstract

Seasonal fluctuations are key features of high-latitude marine ecosystems, where zooplankton exhibit a wide array of adaptations within their life cycles. Repeated, sub-seasonal sampling of Antarctic zooplankton is rare, even along the West Antarctic Peninsula (WAP), where multidecadal changes in sea ice and phytoplankton are well documented. We quantified zooplankton biomass, size structure, and composition at 2 coastal time-series stations in the northern WAP over 3 field seasons (November-March) with different sea-ice, temperature, and phytoplankton conditions. Seasonal peaks in zooplankton biomass followed weeks after phytoplankton blooms. Biomass of mesozooplankton (0.2-2 mm) was consistent and low, while high biomass of macrozooplankton (>2 mm) occasionally resulted in a size distribution dominated by krill and salps, which appears to be a characteristic phenomenon of the Southern Ocean. Zooplankton composition and size changed between years and from spring to summer as the water column warmed after sea-ice breakup. Seasonal succession was apparent typically in decreasing zooplankton size and a shift to species that are less dependent upon phytoplankton. Mean central abundance dates varied by 54 d across 14 taxa, and specific feeding preferences and life-history traits explained the different seasonal abundance patterns. In all 3 yr, the dominant euphausiid species switched from Euphausia superba in spring to Thysanoessa macrura in late summer. Various taxa shifted their phenology between years in response to the timing of sea-ice breakup and the onset of phytoplankton productivity, a level of natural environmental variability to which they appear resilient. Nevertheless, the limits to this resilience in response to climate change remain uncertain.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3