A novel approach for wild fish monitoring at aquaculture sites: wild fish presence analysis using computer vision

Author:

Banno K1,Kaland H1,Crescitelli AM1,Tuene SA1,Aas GH1,Gansel LC1

Affiliation:

1. Department of Biological Sciences Ålesund, Norwegian University of Science and Technology, 6025 Ålesund, Norway

Abstract

Aquaculture in open sea-cages attracts large numbers of wild fish. Such aggregations may have various impacts on farmed and wild fish, the environment, fish farming, and fisheries activities. Therefore, it is important to understand the patterns and amount of wild fish aggregations at aquaculture sites. In recent years, the use of artificial intelligence (AI) for automated detection of fish has seen major advancements, and this technology can be applied to wild fish abundance monitoring. We present a monitoring procedure that uses a combination of multiple cameras and automatic fish detection by AI. Wild fish in images collected around commercial salmon cages in Norway were automatically identified and counted by a system based on the real-time object detector framework YOLOv4, and the results were compared with manual human counts. Overall, the automatic system resulted in higher fish numbers than the manual counts. The performance of the system was satisfactory regarding false negatives (i.e. non-detected fish), while the false positive (i.e. objects wrongly detected as fish) rate was above 7%, which was considered an acceptable limit of error in comparison with the manual counts. The main causes of false positives were confusing backgrounds and mismatches between detection thresholds for automated and manual counts. However, these issues can be overcome by using training images that represent real scenarios (i.e. various backgrounds and fish densities) and setting proper detection thresholds. We present here a procedure with great potential for autonomous monitoring of wild fish abundance at aquaculture sites.

Publisher

Inter-Research Science Center

Subject

Management, Monitoring, Policy and Law,Water Science and Technology,Aquatic Science

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3