Virulence and genetic differences among white spot syndrome virus isolates inoculated in Penaeus vannamei

Author:

Hernández-Montiel Á1,Giffard-Mena I1,Weidmann M23,Bekaert M2,Ulrich K2,Benkaroun J24

Affiliation:

1. Facultad de Ciencias Marinas, Universidad Autónoma de Baja California, Carretera Tijuana-Ensenada No. 3917, Ensenada, Baja California 22860, Mexico

2. Institute of Aquaculture, Stirling University, Stirling FK9 4LA, UK

3. Institute of Microbiology and Virology, Medical School Brandenburg Theodor Fontane, 01968 Senftenberg, Germany

4. MRC-University of Glasgow Centre for Virus Research, University of Glasgow, Glasgow G61 1QH, UK

Abstract

White spot syndrome virus (WSSV) infects several economically important aquaculture species, and has caused significant losses to the industry. This virus belongs to the Nimaviridae family and has a dsDNA genome ranging between 257 and 309 kb (more than 20 isolate genomes have been fully sequenced and published to date). Multiple routes of infection could be the cause of the high virulence and mortality rates detected in shrimp species. Particularly in Penaeus vannamei, differences in isolate virulence have been observed, along with controversy over whether deletions or insertions are associated with virulence gain or loss. The pathogenicity of 3 isolates from 3 localities in Mexico (2 from Sinaloa: ‘CIAD’ and ‘Angostura’; and one from Sonora: ‘Sonora’) was evaluated in vivo in whiteleg shrimp P. vannamei infection assays. Differences were observed in shrimp mortality rates among the 3 isolates, of which Sonora was the most virulent. Subsequently, the complete genomes of the Sonora and Angostura isolates were sequenced in depth from infected shrimp tissues and assembled in reference to the genome of isolate strain CN01 (KT995472), comprising 289350 and 288995 bp, respectively. Three deletion zones were identified compared to CN01, comprising 15 genes, including 3 envelope proteins (VP41A, VP52A and VP41B), 1 non-structural protein (ICP35) and 11 other encoding proteins whose function is currently unknown. In addition, 5 genes (wsv129, wsv178, wsv204, wsv249 and wsv497) presented differences in their repetitive motifs, which could potentially be involved in the regulation of gene expression, causing virulence variations.

Publisher

Inter-Research Science Center

Subject

Aquatic Science,Ecology, Evolution, Behavior and Systematics

Reference69 articles.

1. BLAST Ring Image Generator (BRIG): simple prokaryote genome comparisons

2. Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. www.bioinformatics.babraham.ac.uk/projects/fastqc/ (accessed 18 April 2020)

3. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. Proc Int Conf Intell Syst Mol Biol 2:28-36

4. Homeodomain proteins in action: similar DNA binding preferences, highly variable connectivity

5. Trimmomatic: a flexible trimmer for Illumina sequence data

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3