Zooplankton trophic structure and ecosystem productivity

Author:

Décima M1

Affiliation:

1. Scripps Institution of Oceanography, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA

Abstract

The number of trophic steps within a plankton food web plays an important role in determining the energy available to support higher-level consumers by affecting trophic transfer efficiency (TE): fewer steps can enhance TE by decreasing respiration and predation losses. In this study, trophic structure within the zooplankton community was investigated using stable isotopes in size-fractionated mesozooplankton, and related to 2 biomass proxies related to TE: the normalized biomass size spectra (NBSS) and the ratio of zooplankton:phytoplankton biomass (log10(zoo:phyto)). Four regions were compared: the California Current Ecosystem (CCE—most productive), the Equatorial Pacific (EqP), the Costa Rica Dome (CRD) and the North Pacific Subtropical Gyre (NPSG—least productive). Compound-specific isotope analysis of amino acids confirmed large differences (~3‰) in the isotopic baseline among ecosystems. EqP and NPSG had low and distinct source δ15N values, while CRD/CCE had high and overlapping values. Trophic differences indicated that the CCE had the lowest number (0) of trophic differences within the 4 zooplankton size classes; NPSG and EqP had the highest number (3), and CRD was intermediate (1). NBSS slopes confirmed the CCE and NPSG as extremes and statistically different from each other. TE patterns estimated from log10(zoo:phyto) suggested EqP was the least efficient, while the other 3 ecosystems (despite large ranges in zooplankton and phytoplankton biomass) had similar TEs. The inverse relationship between food chain length and system productivity, a paradigm originally formulated for microbial food webs, holds for the mesozooplankton assemblage at the productivity extremes.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3