Ecological connectivity with mangroves influences tropical seagrass population longevity and meadow traits within an island ecosystem

Author:

Mishra AK1,Apte D1

Affiliation:

1. Marine Conservation Department, Bombay Natural History Society, Hornbill House, Dr. Salim Ali Chowk, Shaheed Bhagat Singh Road, Opp. Lion Gate, Mumbai, 400001, India

Abstract

Seagrass meadows around the Andaman Sea are globally significant, but declining rapidly. Assessment of the existing seagrass population dynamics is essential to facilitate effective conservation measures. We studied population dynamics of the seagrass Thalassia hemprichii at 3 locations in the Andaman and Nicobar Islands in the Andaman Sea. At each location, 2 sites were assessed, one with mangroves (MG) and another without mangroves (WMG). Quadrat and corer sampling techniques were used to collect seagrass and sediment samples. Reconstruction techniques were used to derive population dynamics of T. hemprichii. Sand fractions dominated (>90%) the T. hemprichii meadows, with silt comprising a higher percentage only at the MG sites. The density, biomass, productivity and horizontal meadow migration of T. hemprichii were higher at the MG sites. The number of leaves shoot-1, vertical rhizome (VR), VR internode length, number of VRs shoot-1 and vertical growth were higher at the WMG sites. T. hemprichii required less time to produce a single leaf at the MG sites than at the WMG sites. Plants associated with mangroves had 4 to 5 yr of longevity, with higher numbers of younger plants. Population growth rates were positive at all sites except at the WMG site of Burmanallah. Our results provide evidence that mangrove ecosystems have a positive impact on seagrass meadow traits and population dynamics. Therefore, it is crucial to focus on the ecological connectivity between seagrasses and associated coastal ecosystems, as it is pivotal to increase our understanding of the important link between coastal ecosystems and ecosystem functioning.

Publisher

Inter-Research Science Center

Subject

Ecology,Aquatic Science,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3