Multi-habitat carbon stock assessments to inform nature-based solutions for coastal seascapes in arid regions

Author:

Carpenter Stephen,Evans Claire,Pittman Simon J.,Antonopoulou Marina,Bejarano Ivonne,Das Himansu S.,Möller Mona,Peel Kate,Samara Fatin,Stamoulis Kostantinos A.,Mateos-Molina Daniel

Abstract

Coastal ecosystems are integral to global carbon cycling and are increasingly recognised for their role in mitigating climate change. Within these ecosystems, the dynamics of carbon storage are diverse, varying significantly across different habitats. However, existing management strategies often focus predominantly on vegetated habitats neglecting the contributions of non-vegetated areas. We address this knowledge gap by providing a quantitative spatial assessment of carbon storage across coastal seascapes varying in plant biomass. Our comprehensive multi-habitat inventory of carbon stocks in the United Arab Emirates confirmed that mangroves are the largest carbon-storing habitat per hectare (94.3 t/ha), followed by saltmarshes (63.6 t/ha), microbial mats (51.6 t/ha), mudflats (46.8 t/ha), seagrass (32.5 t/ha), and coastal sabkha (31.0 t/ha).Mean carbon content in the top 50 cm of mangrove soils (53.9 t/ha) was similar to saltmarshes (52.7 t/ha), microbial mats (51.6 t/ha), and mudflats (46.8 t/ha). We highlight the importance of including non-vegetated habitats in carbon accounting and management strategies. Our findings suggest that a more context-specific whole-system approach is essential for guiding effective ecosystem management and designing ecologically meaningful Nature-based Solutions (NbS). Adopting this broader perspective in NbS can ensure more comprehensive conservation and restoration outcomes, which not only protect and enhance blue carbon ecosystems but also contribute to broader ecological and social benefits. This approach is pivotal for advancing our understanding of interconnected coastal ecosystems and their role in climate change mitigation.

Publisher

Frontiers Media SA

Subject

Ocean Engineering,Water Science and Technology,Aquatic Science,Global and Planetary Change,Oceanography

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3