Advancing bioenergetics-based modeling to improve climate change projections of marine ecosystems

Author:

Rose KA1,Holsman K2,Nye JA3,Markowitz EH2,Banha TNS4,Bednaršek N56,Bueno-Pardo J7,Deslauriers D8,Fulton EA9,Huebert KB10,Huret M11,Ito Si12,Koenigstein S1314,Li L15,Moustahfid H16,Muhling BA1314,Neubauer P17,Paula JR181920,Siddon EC21,Skogen MD22,Spencer PD2,van Denderen PD23,van der Meeren GI24,Peck MA2526

Affiliation:

1. Horn Point Laboratory, University of Maryland Center for Environmental Science, 2020 Horns Point Road, Cambridge, MD 21613, USA

2. NOAA Fisheries, Alaska Fisheries Science Center, 7600 Sand Point Way N.E., Seattle, WA 98115, USA

3. Earth, Marine and Environmental Sciences, Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557, USA

4. Centro de Biologia Marinha, Universidade de São Paulo, São Sebastião, SP 11612109, Brazil

5. Cooperative Institute for Marine Resources Studies, Hatfield Marine Science Center 2030 SE Marine Science Drive, Newport, OR 97365, USA

6. Jozef Stefan Institute, Department of Environmental Sciences, 1000 Ljubljana, Slovenia

7. Centro de Investigación Mariña, Universidade de Vigo, Future Oceans Lab, Lagoas-Marcosende, 36310 Vigo, Spain

8. Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, 310 allée des Ursulines, Rimouski, Quebec G5L 3A1, Canada

9. CSIRO Environment, GPO Box 1538, Hobart, TAS 7001, Australia

10. CSS, Inc., 2750 Prosperity Avenue, Fairfax, VA 22031, USA

11. DECOD (Ecosystem Dynamics and Sustainability), IFREMER, INRAE, Institut Agro, Pointe Du Diable, 29280 Plouzané, France

12. Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan

13. Institute of Marine Sciences/NOAA Fisheries Collaborative Program, University of California Santa Cruz, 156 High Street, Santa Cruz, CA 95064, USA

14. NOAA Fisheries, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, CA 92037, USA

15. Fisheries and Oceans Canada, Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2Y 4A2, Canada

16. NOAA, US Integrated Ocean Observing System, 1315 East-West Highway, Silver Spring, MD 20910, USA

17. Dragonfly Data Science, PO Box 27535, Wellington 6141, New Zealand

18. MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, Faculdade de Ciências da Universidade de Lisboa, Laboratório Marítimo da Guia, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal

19. Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal

20. Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, USA

21. NOAA, National Marine Fisheries Service, Alaska Fisheries Science Center, Auke Bay Laboratories, 17109 Pt. Lena Loop Road, Juneau, AK 99801, USA

22. Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway

23. Centre for Ocean Life, National Institute of Aquatic Resources, Technical University of Denmark, Kemitorvet Building 202, 2800 Kongens Lyngby, Denmark

24. Institute of Marine Research, Austevoll Research Station, Sauganeset 16, 5392 Storebø, Norway

25. Department of Coastal Systems, Royal Netherlands Institute for Sea Research, PO Box 59, 1790 Den Burg (Texel), The Netherlands

26. Marine Animal Ecology Group, Department of Animal Sciences, Wageningen University, 6700 HB Wageningen, The Netherlands

Abstract

Climate change has rapidly altered marine ecosystems and is expected to continue to push systems and species beyond historical baselines into novel conditions. Projecting responses of organisms and populations to these novel environmental conditions often requires extrapolations beyond observed conditions, challenging the predictive limits of statistical modeling capabilities. Bioenergetics modeling provides the mechanistic basis for projecting climate change effects on marine living resources in novel conditions, has a long history of development, and has been applied widely to fish and other taxa. We provide our perspective on 4 opportunities that will advance the ability of bioenergetics-based models to depict changes in the productivity and distribution of fishes and other marine organisms, leading to more robust projections of climate impacts. These are (1) improved depiction of bioenergetics processes to derive realistic individual-level response(s) to complex changes in environmental conditions, (2) innovations in scaling individual-level bioenergetics to project responses at the population and food web levels, (3) more realistic coupling between spatial dynamics and bioenergetics to better represent the local- to regional-scale differences in the effects of climate change on the spatial distributions of organisms, and (4) innovations in model validation to ensure that the next generation of bioenergetics-based models can be used with known and sufficient confidence. Our focus on specific opportunities will enable critical advancements in bioenergetics modeling and position the modeling community to make more accurate and robust projections of the effects of climate change on individuals, populations, food webs, and ecosystems.

Publisher

Inter-Research Science Center

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3