Early-life dispersal traits of coastal fishes: an extensive database combining observations and growth models
-
Published:2024-08-28
Issue:8
Volume:16
Page:3851-3871
-
ISSN:1866-3516
-
Container-title:Earth System Science Data
-
language:en
-
Short-container-title:Earth Syst. Sci. Data
Author:
Di Stefano MarineORCID, Nerini David, Alvarez ItziarORCID, Ardizzone Giandomenico, Astruch Patrick, Basterretxea Gotzon, Blanfuné Aurélie, Bonhomme Denis, Calò Antonio, Catalan Ignacio, Cattano Carlo, Cheminée AdrienORCID, Crec'hriou RomainORCID, Cuadros AmaliaORCID, Di Franco AntonioORCID, Diaz-Gil Carlos, Estaque Tristan, Faillettaz RobinORCID, Félix-Hackradt Fabiana C.ORCID, Garcia-Charton José Antonio, Guidetti Paolo, Guilloux LoïcORCID, Harmelin Jean-Georges, Harmelin-Vivien Mireille, Hidalgo Manuel, Hinz Hilmar, Irisson Jean-Olivier, La Mesa Gabriele, Le Diréach Laurence, Lenfant Philippe, Macpherson Enrique, Matić-Skoko SanjaORCID, Mercader Manon, Milazzo Marco, Monfort Tiffany, Moranta JoanORCID, Muntoni Manuel, Murenu Matteo, Nunez Lucie, Olivar M. Pilar, Pastor Jérémy, Pérez-Ruzafa ÁngelORCID, Planes Serge, Raventos Nuria, Richaume Justine, Rouanet Elodie, Roussel Erwan, Ruitton Sandrine, Sabatés Ana, Thibaut Thierry, Ventura DanieleORCID, Vigliola Laurent, Vrdoljak Dario, Rossi VincentORCID
Abstract
Abstract. Early-life stages play a key role in the dynamics of bipartite life cycle marine fish populations. Difficult to monitor, observations of these stages are often scattered in space and time. While Mediterranean coastlines have often been surveyed, no effort has been made to assemble historical observations. Here we build an exhaustive compilation of dispersal traits for coastal fish species, considering in situ observations and growth models (Di Stefano et al., 2023; https://doi.org/10.17882/91148). Our database contains over 110 000 entries collected from 1993 to 2021 in various subregions. All observations are harmonized to provide information on dates and geolocations of both spawning and settlement, along with pelagic larval durations. When applicable, missing data and associated confidence intervals are reconstructed from dynamic energy budget theory. Statistical analyses allow traits’ variability to be revisited and sampling biases to be revealed across taxa, space and time, hence providing recommendations for future studies and sampling. Comparison of observed and modelled entries provides suggestions to improve the feed of observations into models. Overall, this extensive database is a crucial step to investigate how marine fish populations respond to global changes across environmental gradients.
Funder
European Space Agency
Publisher
Copernicus GmbH
Reference99 articles.
1. Agüera, A., Ahn, I.-Y., Guillaumot, C., and Danis, B.: A Dynamic Energy Budget (DEB) model to describe Laternula elliptica (King, 1832) seasonal feeding and metabolism, PLOS ONE, 12, e0183848, https://doi.org/10.1371/journal.pone.0183848, 2017. a 2. Almada, V. C., Gonçalves, E. J., De Oliveira, R. F., and Barata, E. N.: Some features of the territories in the breeding males of the intertidal blenny Lipophrys pholis (Pisces: Blenniidae), J. Mar. Biol. Assoc. UK, 72, 187–197, https://doi.org/10.1017/S0025315400048876, 1992. a 3. Assis, J., Tyberghein, L., Bosch, S., Verbruggen, H., Serrão, E. A., De Clerck, O., and Tittensor, D.: Bio‐ORACLE v2.0: Extending marine data layers for bioclimatic modelling, Global Ecol. Biogeogr., 27, 277–284, https://doi.org/10.1111/geb.12693, 2018. a 4. Ayyildiz, H. and Altin, A.: Pelagic larval duration and early growth of striped seabream, Lithognathus mormyrus inhabiting the Gökçeada shallow waters, Turkey, Research in Marine Sciences, 6, 883–895, 2021. a 5. Bates, A. E., Helmuth, B., Burrows, M. T., Duncan, M. I., Garrabou, J., Guy-Haim, T., Lima, F., Queiros, A. M., Seabra, R., Marsh, R., Belmaker, J., Bensoussan, N., Dong, Y., Mazaris, A. D., Smale, D., Wahl, M., and Rilov, G.: Biologists ignore ocean weather at their peril, Nature, 560, 299–301, https://doi.org/10.1038/d41586-018-05869-5, 2018. a
|
|