NIR Spectroscopy Detects Chlorpyrifos-Methyl Pesticide Residue in Rough, Brown, and Milled Rice

Author:

Rodriguez Fatima S,Armstrong Paul R,Maghirang Elizabeth B,Yaptenco Kevin F,Scully Erin D,Arthur Frank H,Brabec Daniel L,Adviento-Borbe Arlene D,Suministrado Delfin C

Abstract

HighlightsNIR spectroscopy detects quantitative and qualitative levels of chlorpyrifos-methyl residues in bulk rice.Levels of chlorpyrifos-methyl residues in bulk rice can be differentiated at 78% to 100% correct classification.Important NIR wavelengths for chlorpyrifos-methyl residue detection were identified.NIR spectroscopy can be used to detect maximum residue levels of chlorpyrifos-methyl pesticide in rice.Abstract. A rapid technique that uses near-infrared reflectance (NIR) spectroscopy for simultaneous qualitative and quantitative determination of the presence of varying concentrations of chlorpyrifos-methyl in bulk samples of rough, brown, and milled rice was established. Five rice varieties, free of pesticides, obtained from RiceTec Inc. and USDA-ARS Arkansas experimental field were used as rough rice samples and also processed to obtain corresponding brown and milled rice. Rice samples were treated with StorcideTM II containing varying levels of the active ingredient, chlorpyrifos-methyl: 0, 1.5, 3, 6, 9, and 12 ppm for rough rice, 0, 0.75, 1.5, 3, 4.5, and 6 ppm for brown rice, and 0, 0.1, 0.2, 0.4, 0.6, and 0.8 ppm for milled rice. Concentrations of chlorpyrifos-methyl were verified using gas chromatography-mass spectrometry analyses. A commercial NIR spectrometer (950-1650 nm wavelength range) was used to obtain spectra of bulk samples. Using partial least squares analysis for quantitative analysis, independent validation showed that chlorpyrifos-methyl residues in rough, brown, and milled rice are predictable with R2 ranging from 0.702 to 0.839 and standard error of prediction (SEP) of 1.763 to 2.374 for rough rice, R2 ranging from 0.722 to 0.800 and SEP of 0.953 to 1.168 for brown rice, and R2 ranging from 0.693 to 0.789 and SEP of 0.131 to 0.164 for milled rice. For qualitative analysis obtained using discriminant analysis, rough rice samples with concentrations of 0, 1.5, and 3 ppm pooled as low pesticide level (LPL) is distinguishable to 6, 9, and 12 ppm which were pooled as high pesticide level (HPL). Similarly, for brown and milled rice, the lower three concentrations pooled as LPL is distinguishable from the higher three concentrations pooled as HPL. Independent validation showed overall correct classifications ranging from 77.8% to 92.6% for rough rice, 79.6% to 88.9% for brown rice, and 94.4% to 100% for milled rice. Keywords: Food safety, Grain quality, NIR spectroscopy, Pesticide residue, Rice.

Funder

Agricultural Research Service

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3