Field Validation of Seed Meter Performance at Varying Seeding Rates and Ground Speeds

Author:

Virk Simerjeet S.,Porter Wesley M,Fulton John P.,Pate Gregory L

Abstract

Abstract. High planter performance requires achieving near-perfect seed meter performance in the field during planting. In-field meter performance can be impacted by several factors including meter setup, ground speed, seeding rate, planter vibration, and field conditions. A study was conducted to evaluate the field performance of two different seed meters (John Deere Standard and Precision Planting eSet) at varying seeding rates and ground speeds during planting. Study treatments consisted of planting corn at seeding rates of 49,000, 59,000, 69,000, 79,000, and 89,000 seeds ha-1 at four different ground speeds of 6.1, 7.1, 8.2, and 9.5 km h-1. These ground speeds and seeding rates were implemented in a strip-split plot design in the field with seeding rates blocked within the individual ground speed replications. Field tests were performed by uploading a variable-rate seeding prescription map into the planter rate controller and then travelling at the desired ground speed for each planter pass. Field data collection consisted of measuring plant population and plant spacing in the plots separately for each seed meter. Meter performance was evaluated by computing percent skips, multiples, singulation, coefficient of variation (CV), and crop emergence from the field data. Statistical analysis on field data suggested that the percent skips, singulation, CV, and crop emergence were significantly (p<0.05) affected by the seeding rate, and the ground speed did not have any significant (p>0.05) effect on these variables. The percent multiples and CV values also differed significantly (p<0.05) between the John Deere Standard and Precision Planting eSet meter at different ground speed and seeding rate treatments. The percent skips (0.5-3.8%) observed in the field data were, on average, higher than the percent multiples (0.0-1.8%) for both seed meters. The percent skips in general decreased with an increase in the seeding rate whereas no particular trend was observed in the percent multiples. The singulation values varied between 96.0% and 99.4%, and they were not statistically different between the seed meters. The percent CV values increased with an increase in the seeding rate indicating higher variability in plant spacing with increases in the seeding rate. The mean percent emergence for both seed meters ranged from 92.8% to 99.3%, and it was influenced by the seeding rate for the JD Standard meter. A weak association (R2 values between 0.2028 and 0.6587) between the meter performance parameters (percent skips, singulation, and CV) and the meter speed was determined for both seed meters. Results from the study suggested that meter performance was significantly affected by the seeding rate, and the type of seed meter had a significant impact on percent multiples and CV (plant spacing) values attained during planting. Keywords: Field performance, Ground speed, Meter speed, Seed meter, Seeding rate.

Funder

N/A

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3