Precision of grain yield monitors for use in on-farm research strip trials

Author:

Gauci A. A.,Fulton J. P.,Lindsey A.,Shearer S. A.,Barker D.,Hawkins E. M.

Abstract

AbstractOn-farm research (OFR) has become popular as a result of precision agriculture technology simplifying the process and farm software capabilities to summarize results collected through the technology. Different OFR designs exists with strip-trials being a simple approach to evaluate different treatments. Common in OFR is the use of yield monitors to collect crop performance data since yield represents a primary response variable in these type studies. The objective was to investigate the ability of grain yield monitoring technologies to accurately inform strip trials when frequent yield variability exists within an experimental unit. A combination of six sub-plot treatment resolutions (TR) that differed in length of imposed yield variation (7.6, 15.2, 30.5, 61.0, 121.9, and 243.8 m) were harvested at combine ground speeds of 3.2, 6.4, 7.2, and 8.1 kph, depending on study site (three study sites total). Intentional yield differences in maize (Zea mays L.) were created for each sub-plot by alternating the amount nitrogen (N) applied: 0 or 202 kg N/ha. Yield was measured by four commercially available yield monitoring (YM) technologies and a weigh wagon. Comparisons were made between the accumulated mass of the YM technology and weigh wagon through percent differences along with testing the significance of the plotted relationship between YM and weigh wagon. Results indicated that yield monitoring technology can be used to evaluate strip trial performance regardless of yield frequency and variability (error < 3%) within an experimental unit when operating within the calibrated range of the mass flow sensor. Operating outside of the calibrated range of the mass flow sensor resulted in > 15% error in estimating accumulated weight and overestimation of yield by 23%. Finally, no significant differences existed in estimating accumulated weight values between grain yield monitor technologies (all p-values ≥ 0.54).

Publisher

Springer Science and Business Media LLC

Subject

General Agricultural and Biological Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3