Evaluation of Fertigation Applied to Furrow and Overhead Irrigated Cotton Grown in a Black Vertosol in Southern Queensland, Australia

Author:

Antille Diogenes L.

Abstract

Abstract.Field trials were conducted at gated pipe surface and overhead irrigation sites established to cotton ( L.) to evaluate irrigation and fertigation management using a model-based control system. The control strategies determined the timing and volume of irrigation, and the rate of fertilizer-N to apply through fertigation. For this, nitrogen (N) was applied in-crop season using urea ammonium nitrate (UAN, 30% N solution) at a rate of 40 kg ha-1 N. At the furrows site, the uniformity of distribution of fertilizer-N applied through fertigation was satisfactory, which was achieved both at distance (600 m) and depth (0-600 mm). Applying fertilizer-N through fertigation, at the rate used in this study, showed relatively small (=8%) improvements in cotton yield, which was explained by relatively high N rates (180 kg ha-1 N) applied before planting. Given current price ratios (fertilizer-to-cotton), application of N through fertigation appears to be economical in both systems, but relative agronomic efficiencies and economic return from the fertilizer applied were lower in furrow compared with overhead (P<0.05). Fertigation may be recommended when pre-season N application rates are low (e.g., <100 kg ha-1 N), particularly in overhead irrigation as significantly higher efficiencies both in terms of water and N use can be achieved with this system. This would enable some of the operational constraints associated with application of N in-crop season to be overcome; thereby, reducing the need for high rates of N applied up-front. For the overhead system, there were also advantages compared with the furrow system in terms of reduced potential for N2O emissions after irrigation or fertigation. Overall, short-term (30-day period) soil emissions of N2O were approximately eight times higher in furrow compared with overhead. Emissions from non-fertigated crops were approximately two times higher in furrow compared with overhead. Emissions from the fertigated crop under the overhead system were comparable to the non-fertigated crop of the furrow system (P>0.05). In both systems, fluxes were highest within five days of irrigation or fertigation, but they decreased significantly after that time as soil moisture content (water-filled pore space) and soil nitrate levels decreased due to crop uptake. Nitrous oxide fluxes were similar in furrow and overhead 15 days after the irrigation or fertigation event. Areas that warrant further investigation are presented and discussed, including the need for improved timing of fertilizer delivery during the irrigation cycle to ensure that N losses through leaching or gaseous evolution (e.g., N2O, N2) are not economically or environmentally significant. Keywords: Greenhouse gas emissions, Irrigated cotton, Nitrogen use efficiency, Urea ammonium nitrate, Water-run urea.

Funder

Cotton Research and Development Corporation (CRDC), Australian Government

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3