Optimal Configuration and Field Experiments for the Photovoltaic System of a Solar-Powered Hose-Drawn Traveler

Author:

Li Dan,Zhu Delan,Ge Maosheng,Wu Shoujun,Wang Ruixin,Wang Bin,Wu Yamei,Yang Yalin

Abstract

Abstract. High energy consumption is one of the disadvantages of hose-drawn travelers due to the use of water turbines. This study proposes a photovoltaic-powered electric motor instead of a water turbine to achieve high transmission efficiency. A stand-alone photovoltaic generation system (PVGS) was designed for a hose-drawn traveler. To achieve cost savings, a sizing optimization model was built for the PVGS. In the optimization model, the minimum annual cost of the system, which includes the initial capital, replacement, installation, operation, and maintenance costs, is taken as the objective function. The constraints include the battery’s state of charge (SOC) and the power supply reliability, which is composed of the load loss of power supply probability (LPSP) and the energy excess percentage (EXC). The total power produced by the PV panels and the total battery capacity are the decision variables. The optimization model of the PVGS is solved through a particle swarm optimization (PSO) algorithm based on a penalty function. The model is then applied to calculate the optimal configuration of a JP75-300 hose-drawn traveler. Comparisons between the optimal configuration and other six configuration schemes were conducted to verify the optimal solution results. Furthermore, field experiments were performed to test the performance. Finally, the effects of meteorological conditions, driving velocity, and LPSP on the optimal configuration and the annual cost of the PVGS are discussed. The results show that the optimal configuration of this PVGS are 432 W total power from PV panels and 172 Ah total battery capacity, and the optimization model results are the optimal configuration based on comparisons. The optimal configuration met the power requirements of the hose-drawn traveler for four days of field experiments, indicating that the optimal configuration is feasible.HighlightsA photovoltaic-powered electric motor instead of a water turbine was used for high transmission efficiency.An optimization model was built to define the optimal configuration of the photovoltaic generation system (PVGS).The optimal configuration decreased the annual cost of the PVGS while ensuring power supply reliability.Meteorological conditions, driving velocity, and LPSP are key factors affecting the annual cost of the PVGS. Keywords: Driving power requirements, Field experiments, Hose-drawn traveler, Optimization model, Particle swarm optimization, Photovoltaic generation system.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3