Power Generation Prediction for Photovoltaic System of Hose-Drawn Traveler Based on Machine Learning Models

Author:

Li Dan12ORCID,Zhu Delan2,Tao Tao13,Qu Jiwei4ORCID

Affiliation:

1. College of Intelligent Manufacturing, Yangzhou Polytechnic Institute, Yangzhou 225127, China

2. College of Water Resources and Architectural Engineering, Northwest A&F University, Yangling 712100, China

3. Jiangsu Province Engineering Research Center of Intelligent Application for Advanced Plastic Forming, Yangzhou 225127, China

4. School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, China

Abstract

A photovoltaic (PV)-powered electric motor is used for hose-drawn traveler driving instead of a water turbine to achieve high transmission efficiency. PV power generation (PVPG) is affected by different meteorological conditions, resulting in different power generation of PV panels for a hose-drawn traveler. In the above situation, the hose-drawn traveler may experience deficit power generation. The reasonable determination of the PV panel capacity is crucial. Predicting the PVPG is a prerequisite for the reasonable determination of the PV panel capacity. Therefore, it is essential to develop a method for accurately predicting PVPG. Extreme gradient boosting (XGBoost) is currently an outstanding machine learning model for prediction performance, but its hyperparameters are difficult to set. Thus, the XGBoost model based on particle swarm optimization (PSO-XGBoost) is applied for PV power prediction in this study. The PSO algorithm is introduced to optimize hyperparameters in XGBoost model. The meteorological data are segmented into four seasons to develop tailored prediction models, ensuring accurate prediction of PVPG in four seasons for hose-drawn travelers. The input variables of the models include solar irradiance, time, and ambient temperature. The prediction accuracy and stability of the model is then assessed statistically. The predictive accuracy and stability of PV power prediction by the PSO-XGBoost model are higher compared to the XGBoost model. Finally, application of the PSO-XGBoost model is implemented based on meteorological data.

Funder

Natural Science Foundation of the Jiangsu Higher Education Institutions

Jiangsu Provincial Natural Science Foundation

Jiangsu agricultural science and technology innovation fund

Lvyangjinfeng Talent Project of Yangzhou

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3