Downwind Spray Drift Assessment for Airblast Sprayer Applications in a Modern Apple Orchard System

Author:

Rathnayake Anura P.,Khot Lav R.,Hoheisel Gwen A.,Thistle Harold W.,Teske Milt E.,Willett Mike J.

Abstract

HighlightsAirblast sprayer drift potential was evaluated up to 183 m (600 ft) downwind from an orchard edge.A central leader apple orchard was sprayed at dormant and full canopy stage.Higher drift at full canopy stage was likely due to higher wind speeds and lower humidity.String and artificial foliage samplers had higher collection efficiencies than Mylar cards.Abstract. Risk assessment of orchard pesticide spraying is currently based on spray drift estimation using a worst-case scenario (dormant stage). However, most spray applications are conducted during non-dormant canopy growth stages. Such overestimation leads to restrictive operational regulations in pest management activities. Therefore, field data were generated and studied for a mechanistic model that will predict spray drift from airblast spray applications in tree fruit orchards. Spray trials were conducted at dormant and full canopy growth stages in a central leader trained apple orchard. An axial-fan airblast sprayer sprayed fluorescent tracer in the third row from the orchard’s downwind edge, with four passes being one run. A total of 20 runs, i.e., 17 spray runs and three blanks, were performed during each of the two crop growth stages. Mylar cards, artificial foliage (AF), and horizontal strings (HS) were used to quantify drifting spray deposition up to 183 m (600 ft) downwind. Within the orchard, the deposition on card samplers 3 m upwind of the sprayed row was 21.94% ±4.63% (mean ± standard deviation) of applied dose (AD) at dormant stage and 16.02% ±2.86% AD at full canopy stage. Deposition downwind and adjacent (-3 m) to the sprayed row was 17.92% ±2.70% AD and 7.15% ±1.78% AD at dormant and full canopy stages, respectively. Spray drift decreased substantially at the orchard edge to 3.18% ±1.30% AD at dormant stage and 2.30% ±1.16% AD at full canopy stage. Spray drift was very low at 183 m (600 ft) downwind of the orchard, with deposition of 0.002% ±0.003% AD at dormant stage and 0.003% ±0.004% AD at full canopy stage. Deposition data collected at common sampler locations showed that HS and AF samplers collected significantly (p < 0.05) more drifting spray than card samplers. Downwind speeds had a strong linear relationship with spray drift at both growth stages (dormant: R2= 0.80, full canopy: R2= 0.86), while the influence of temperature and humidity could not be directly observed from the collected data. Keywords: Airblast spraying, Deposit samplers, Dormant and full canopy, Drift, Modern orchard systems.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3