Modelling Vineyard Spraying by Precisely Assessing the Duty Cycles of a Blast Sprayer Controlled by Pulse-Width-Modulated Nozzles

Author:

Saiz-Rubio Verónica1ORCID,Ortiz Coral1ORCID,Torregrosa Antonio1ORCID,Ortí Enrique1,Pérez Montano1,Cuenca Andrés1,Rovira-Más Francisco1ORCID

Affiliation:

1. Departamento de Ingeniería Rural y Agroalimentaria, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain

Abstract

The flowrate control of spraying systems with pulse-width-modulated solenoid valves is currently being implemented for precision herbicide application in commodity crops, but solutions for fruit trees set in orchards that require higher pressures are mostly in the development stage. A reason for this has been the higher flowrate and pressure requirements of blast sprayers used for dense canopies typical of high value crops. In the present study, the duty cycles preset by an operator were compared to the actual ones estimated from measuring flowrates. A new developed air-assisted orchard sprayer with shelf hollow disc-cone nozzles was studied, such that flowrates and pressures were registered by a computer for different duty cycles commanded by an operator from 10% to 100% in intervals of 10%. In addition to sensor data, visual assessment was carried out via high-speed video images. The results showed that preset duty cycles were always more than 10% lower than the actual DC estimated from measured flowrates. The effective operational range of the duty cycles went from 20% to 80%. In general, the deviations in transitional periods were higher for lower duty cycles, being difficult to determine the real reduction in flowrate during the transition periods. A correction model has been proposed to adjust the preset duty cycles to make sure that the necessary spray flowrate is released as precisely commanded by prescription maps. Further research will be needed to verify the proper implementation of the developed correction model in field applications.

Funder

Government of Spain through the Project “Smart spraying for a sustainable vineyard and olive trees” PIVOS

Publisher

MDPI AG

Subject

Plant Science,Agronomy and Crop Science,Food Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3