Low-Energy Precision Application (LEPA) Irrigation: A Forty-Year Review

Author:

Bordovsky James P.

Abstract

Abstract. The low-energy precision application (LEPA) irrigation concept was developed 40 years ago (ca. 1978) to address the depletion of irrigation water from the Ogallala Aquifer and the sharp increase in pumping costs caused by the 1970s fuel crisis occurring at that time in the Texas High Plains. The LEPA method applies water to the soil surface at low pressure using a tower-truss irrigation system that continually moves through the field. This method brought changes in irrigation equipment and management that resulted in improvements in water productivity, particularly in semi-arid locations with diminishing water supplies. A review of published information pertaining to LEPA history, evaluation, and usage was performed. On landscapes of less than 1% slope, negative crop yield effects caused by irrigation runoff and start-stop system alignment were overcome with appropriately spaced basins, or furrow checks, and multiple irrigations over the course of the growing season. No consistent yield advantage at any level of irrigation was documented by placing water in every furrow (1 m spacing) compared to alternate furrows (2 m spacing). In irrigation treatments having =50% of the estimated full irrigation quantity, LEPA resulted in a 16% yield increase over sprinkler methods, although subsurface drip irrigation (SDI) resulted in a 14% yield increase over LEPA. At irrigation levels >50% of full irrigation, crop yields of sprinkler treatments were only slightly less than those of LEPA, and SDI yields were 7% greater than LEPA. The LEPA irrigation method was the catalyst for innovations in chemigation, no-till planting, and site-specific irrigation. As irrigation water becomes more limited, use and proper management of optimum irrigation methods will be critical. Keywords: Basin tillage, Chemigation, Evapotranspiration, Irrigation methods, LEPA, Low-energy precision application, Runoff, Spray irrigation, Sprinkler irrigation, Uniformity, Water use efficiency.

Funder

Texas A&M AgriLife Research

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3