Irrigation Response, Water Use, and  Lint Yield of Upland Cotton Cultivars

Author:

Schwartz Robert C.,Witt Travis W.,Ulloa Mauricio,Colaizzi Paul D.,Baumhardt R. Louis

Abstract

Highlights In-season crop water use and canopy temperatures after first square did not differ among cultivars. Lint yield was significantly affected by cultivar in all study years. Cultivar effects on lint yield were significant only at higher irrigation levels. Crop water productivity increased with increasing irrigation in two of the three study years. Abstract. Upland cotton (Gossypium hirsutum L.) production requires less irrigation compared with other crops and thus provides an opportunity to reduce risk and maintain profitability in areas where water is limited. Water use, canopy temperature, lint yield, and crop water productivity were evaluated for four early to medium maturity upland cotton cultivars under three levels (100%, 66%, and 33%) of alternate furrow subsurface drip irrigation (SDI) in a thermally limited environment. Crop evapotranspiration (ET) across cultivars and years averaged 627, 547, and 467 mm for the 100%, 66%, and 33% irrigation levels, respectively, and did not differ among cultivars (P > 0.05). Changes in stored soil water within each irrigation level were similar among cultivars, with significant differences occurring infrequently. Measured canopy temperatures from first white flower to two weeks after cutout did not significantly differ among cultivars (P > 0.10) within each irrigation level. Crop water use during boll maturation, as inferred from the developed crop coefficient curve, was considerably less than reported by other studies, signifying that irrigation could be terminated earlier without reducing lint yield. The cultivar effect on lint yield was significant in all study years (P < 0.001), but only at the 66% and 100% irrigation levels, with one cultivar exceeding the average yields of all evaluated cultivars by 13% across the three study years. Medium maturity cultivars usually yielded less than early maturity cultivars, especially for a year with less accumulation of thermal energy. Crop selection and late season irrigation water management were both key to improving cotton water productivity. Keywords: Upland cotton, Subsurface drip irrigation, Water productivity, Root water uptake, Canopy temperature.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3