Author:
Shi Yameng,Wen Baoqin,Li Liqiao,Wang Tao,Li Yang,Ren Sixue,Li Jingbin
Abstract
HighlightsThe thermal reaction between Glycyrrhiza uralensis and metal was analyzed via thermogravimetry.The wear characteristics of three common blade metals were studied under laboratory conditions.The wear mechanisms on the blades by different parts of Glycyrrhiza uralensis were analyzed.Thermal oxidation and element transfer occurred during the wear of Glycyrrhiza uralensis and metals.Abstract. To investigate the wear of metal blades when kneading and crushing total mixed ration (TMR) forage grass, the chemical composition of licorice (Glycyrrhiza uralensis) was determined using hydrochloric acid hydrolysis, titration, and Kjeldahl nitrogen determination, and the thermal stability of G. uralensis was analyzed with thermogravimetry (TG). Blades made of spring steel (65Mn), mold steel (Cr12MoV), and tool steel (9CrSi) were selected for the wear tests. The wear mechanisms of the cork and wood layers of G. uralensis on blades were explored via reciprocating friction. The elemental content and worn surface morphology of the blades were analyzed using inductively coupled plasma atomic emission spectrometry (ICP-AES), three-dimensional morphology, scanning electron microscopy, and X-ray energy spectrum analysis. Results showed that the wear on the blades was mainly abrasive, fatigue, and adhesive wear. Comparison of the wear of the G. uralensis cork and wood layers with that of the three blade types revealed that the coefficient of friction was smallest for the 65Mn blades, at 0.20 and 0.75, respectively, for the cork and wood layers. The combination of pyrolysis of G. uralensis with a change in the atomic content on the wear surfaces of the blades indicated that the wear process of the blades was accompanied by thermal oxidation. Damage to the blades by the G. uralensis wood layer was more serious than damage by the cork layer. The surface roughness and the depth of the wear scars for the G. uralensis wood layer on 65Mn blades were 0.085 µm and 0.427 µm, respectively, which were lower than the wear parameters for the Cr12MoV and 9CrSi blades under the same conditions. Therefore, 65Mn blades have good wear resistance and plastic resistance under the same wear condition. This study provides a reference for blade selection for cutting of TMR forage materials. Keywords: Blade, Glycyrrhiza uralensis, Surface roughness, Wear resistance, Weightlessness rate.
Publisher
American Society of Agricultural and Biological Engineers (ASABE)
Subject
Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献