Wear characteristics of flat die in flat die pellet mills based on Glycyrrhiza uralensis

Author:

Ren SixueORCID,Li JingbinORCID,Shi Yameng,Wen Baoqin,Li Liqiao,Su Zipeng

Abstract

Abstract During granulation, a serious wear problem may be found in flat die as a key component of a flat die pellet mill. Specific to this problem, Glycyrrhiza uralensis was selected as the wear-causing material to investigate the wear mechanism of the flat die. Additionally, carburizing steel (20Cr and 20CrMnTi) and stainless steel (4Cr13) commonly used in flat die were adopted to conduct wear tests. To explore the influence of Glycyrrhiza uralensis powder and rods on friction and wear properties of the above three types of steel materials, a CFT-I general-purpose tester for surfaces was applied under dry friction conditions. Moreover, x-ray diffractometer (XRD), three-dimensional profilometry, scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS) were used to analyze the phase compositions, surface morphologies, and elementary compositions of the samples. As demonstrated by relevant results, the influence of Glycyrrhiza uralensis on the flat die is primarily embodied in abrasive, adhesive, and fatigue wear, and a thermal oxidation reaction occurs on the surface of the flat die. By comparing the wear conditions of the three steel materials between the powder and rods of Glycyrrhiza uralensis, it is found that flat die damages caused by glycyrrhiza rods are more severe than those of its powder. Additionally, the lowest friction coefficients are generated by 20CrMnTi, which are 0.40 and 0.88, respectively. In terms of the mean wear depth, its values are 1.2 and 2 μm, which are below those of 20Cr and 4Cr13. The results herein reveal that flat die made of 20CrMnTi have excellent wear and ductile fracture resistance characteristics. Hence, this study may provide a theoretical guide for selecting flat die materials.

Funder

National Science Foundation of China

Shihezi University Transformation of Scientific and Technological Achievements

Shihezi University Youth Innovative Talent Cultivation Program

Publisher

IOP Publishing

Subject

Metals and Alloys,Polymers and Plastics,Surfaces, Coatings and Films,Biomaterials,Electronic, Optical and Magnetic Materials

Reference25 articles.

1. Advantages of pellet feed;Tu;Xinjiang. Anim Husb.,2015

2. Modeling and analysis on extruding force in pelleting process;Wu;Trans. Chin. Soc. Agric. Eng.,2010

3. Microstructure and wear resistance of NiCr-Al2O3 coating alloyed with 45# steel laser;Liu;Surf. Tech.,2016

4. Mechanism analysis and modeling on pelletization process;Jiang;J. Chin. Agr. Mech.,2018

5. Experiment of metal materials abrasive wear for alfalfa powder;Zhang;Trans. Chin. Soc. Agric. Mach.,2009

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3