BiGRU-Attention Based Cow Behavior Classification Using Video Data for Precision Livestock Farming

Author:

Guo Yangyang,Qiao Yongliang,Sukkarieh Salah,Chai Lilong,He Dongjian

Abstract

HighlightsBiGRU-attention based cow behavior classification was proposed.Key spatial-temporal features were captured for behavior representation.BiGRU-attention achieved >82% classification accuracy on calf and adult cow datasets.The proposed method could be used for similar animal behavior classification.Abstract. Animal behavior consists of time series activities, which can reflect animals’ health and welfare status. Monitoring and classifying animal behavior facilitates management decisions to optimize animal performance, welfare, and environmental outcomes. In recent years, deep learning methods have been applied to monitor animal behavior worldwide. To achieve high behavior classification accuracy, a BiGRU-attention based method is proposed in this article to classify some common behaviors, such as exploring, feeding, grooming, standing, and walking. In our work, (1) Inception-V3 was first applied to extract convolutional neural network (CNN) features for each image frame in videos, (2) bidirectional gated recurrent unit (BiGRU) was used to further extract spatial-temporal features, (3) an attention mechanism was deployed to allocate weights to each of the extracted spatial-temporal features according to feature similarity, and (4) the weighted spatial-temporal features were fed to a Softmax layer for behavior classification. Experiments were conducted on two datasets (i.e., calf and adult cow), and the proposed method achieved 82.35% and 82.26% classification accuracy on the calf and adult cow datasets, respectively. In addition, in comparison with other methods, the proposed BiGRU-attention method outperformed long short-term memory (LSTM), bidirectional LSTM (BiLSTM), and BiGRU. Overall, the proposed BiGRU-attention method can capture key spatial-temporal features to significantly improve animal behavior classification, which is favorable for automatic behavior classification in precision livestock farming. Keywords: BiGRU, Cow behavior, Deep learning, LSTM, Precision livestock farming.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3