CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM

Author:

Gao Guohong1ORCID,Wang Chengchao1,Wang Jianping1ORCID,Lv Yingying1,Li Qian1,Ma Yuxin1,Zhang Xueyan1,Li Zhiyu1,Chen Guanglan1

Affiliation:

1. School of Information Engineering, Henan Institute of Science and Technology, Xinxiang 453003, China

Abstract

Cattle behavior classification technology holds a crucial position within the realm of smart cattle farming. Addressing the requisites of cattle behavior classification in the agricultural sector, this paper presents a novel cattle behavior classification network tailored for intricate environments. This network amalgamates the capabilities of CNN and Bi-LSTM. Initially, a data collection method is devised within an authentic farm setting, followed by the delineation of eight fundamental cattle behaviors. The foundational step involves utilizing VGG16 as the cornerstone of the CNN network, thereby extracting spatial feature vectors from each video data sequence. Subsequently, these features are channeled into a Bi-LSTM classification model, adept at unearthing semantic insights from temporal data in both directions. This process ensures precise recognition and categorization of cattle behaviors. To validate the model’s efficacy, ablation experiments, generalization effect assessments, and comparative analyses under consistent experimental conditions are performed. These investigations, involving module replacements within the classification model and comprehensive analysis of ablation experiments, affirm the model’s effectiveness. The self-constructed dataset about cattle is subjected to evaluation using cross-entropy loss, assessing the model’s generalization efficacy across diverse subjects and viewing perspectives. Classification performance accuracy is quantified through the application of a confusion matrix. Furthermore, a set of comparison experiments is conducted, involving three pertinent deep learning models: MASK-RCNN, CNN-LSTM, and EfficientNet-LSTM. The outcomes of these experiments unequivocally substantiate the superiority of the proposed model. Empirical results underscore the CNN-Bi-LSTM model’s commendable performance metrics: achieving 94.3% accuracy, 94.2% precision, and 93.4% recall while navigating challenges such as varying light conditions, occlusions, and environmental influences. The objective of this study is to employ a fusion of CNN and Bi-LSTM to autonomously extract features from multimodal data, thereby addressing the challenge of classifying cattle behaviors within intricate scenes. By surpassing the constraints imposed by conventional methodologies and the analysis of single-sensor data, this approach seeks to enhance the precision and generalizability of cattle behavior classification. The consequential practical, economic, and societal implications for the agricultural sector are of considerable significance.

Funder

Key Scientific and Technological Project of Henan Province

Innovation and Entrepreneurship Training Program of National College Students in China

Major Special Project of Xinxiang City

Key Scientific Research Projects of Colleges and Universities in Henan Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3