Non-Destructive Identification of Internal Watercore in Apples Based on Online Vis/NIR Spectroscopy

Author:

Chang Han,Wu Qifang,Tian Hao,Yan Jinshan,Luo Xuan,Xu Huirong

Abstract

HighlightsA custom-designed online Vis/NIR spectroscopy system was used for real-time detection of watercore in apples.Watercore severity index (WSI) was applied for watercore severity assessment.Higher than 95.0% accuracy was obtained for total samples in classifying sound apples from watercore groups using kNN, BPNN, SVM, and 1D CNN at a detection speed of 3 apples s-1.Linear kernel SVM achieved the best classification accuracy of 96% for samples in the prediction set.Abstract. Watercore, an internal physiological disorder affecting apples, can be characterized by water-soaked, glassy regions near the fruit core. It is used as an indicator of full ripeness, storage suitability, and price of apples in many countries. Therefore, fast and non-destructive detection of watercore plays an important role in improving the commercial value of apples and reducing postharvest costs. In this study, an online visible/near-infrared (Vis/NIR) spectroscopy system was proposed for real-time detection of watercore in ‘Fuji’ apples (Malus pumila Mill.). A total of 318 samples harvested during harvest season in the same orchard were analyzed for both watercore severity index (WSI) and soluble solids content (SSC). According to the USDA watercore classification standard, all samples were classified into one of four classes (sound, slight, moderate, or severe) based on the affected area of watercore. Results showed that, although there was a positive correlation between spectral intensity and affected area of watercore, no significant relationship between affected area size and SSC could be obtained by Pearson test (correlation coefficient ~0.094). Generally, >95.0% accuracy was obtained for total samples at a detection speed of 3 apples s-1 in classifying sound from watercore groups using k-nearest neighbors (kNN) algorithm, back-propagation neural network (BPNN), support vector machine (SVM) classification, and one-dimensional convolutional neural network (1D-CNN). The best classification result was achieved by linear kernel SVM, with an accuracy of 96% for total samples. These classification algorithms showed preliminary feasibility for online screening of apples with watercore using Vis/NIR spectroscopy in industrial applications. Keywords: Apple watercore, Machine learning, Online detection, Vis/NIR spectroscopy, Watercore severity index.

Publisher

American Society of Agricultural and Biological Engineers (ASABE)

Subject

Soil Science,Agronomy and Crop Science,Biomedical Engineering,Food Science,Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3