Dynamic Nondestructive Detection Models of Apple Quality in Critical Harvest Period Based on Near-Infrared Spectroscopy and Intelligent Algorithms

Author:

Guo Zhiming12ORCID,Chen Xuan1,Zhang Yiyin1,Sun Chanjun1,Jayan Heera1ORCID,Majeed Usman2,Watson Nicholas J.3,Zou Xiaobo12

Affiliation:

1. China Light Industry Key Laboratory of Food Intelligent Detection & Processing, School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China

2. International Joint Research Laboratory of Intelligent Agriculture and Agri-Products Processing, Jiangsu University, Zhenjiang 212013, China

3. School of Food Science and Nutrition, University of Leeds, Leeds LS2 9JT, UK

Abstract

Apples are usually bagged during the growing process, which can effectively improve the quality. Establishing an in situ nondestructive testing model for in-tree apples is very important for fruit companies in selecting raw apple materials for valuation. Low-maturity apples and high-maturity apples were acquired separately by a handheld tester for the internal quality assessment of apples developed by our group, and the effects of the two maturity levels on the soluble solids content (SSC) detection of apples were compared. Four feature selection algorithms, like ant colony optimization (ACO), were used to reduce the spectral complexity and improve the apple SSC detection accuracy. The comparison showed that the diffuse reflectance spectra of high-maturity apples better reflected the internal SSC information of the apples. The diffuse reflectance spectra of the high-maturity apples combined with the ACO algorithm achieved the best results for SSC prediction, with a prediction correlation coefficient (Rp) of 0.88, a root mean square error of prediction (RMSEP) of 0.5678 °Brix, and a residual prediction deviation (RPD) value of 2.466. Additionally, the fruit maturity was predicted using PLS-LDA based on color data, achieveing accuracies of 99.03% and 99.35% for low- and high-maturity fruits, respectively. These results suggest that in-tree apple in situ detection has great potential to enable improved robustness and accuracy in modeling apple quality.

Funder

National Key R&D Program of China

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3